###### # Project : GPT4ALL-UI # File : backend.py # Author : ParisNeo with the help of the community # Supported by Nomic-AI # Licence : Apache 2.0 # Description : # This is an interface class for GPT4All-ui backends. ###### from pathlib import Path from typing import Callable from transformers import AutoTokenizer from transformers import AutoModelForCausalLM from pyGpt4All.backends.backend import GPTBackend __author__ = "parisneo" __github__ = "https://github.com/nomic-ai/gpt4all-ui" __copyright__ = "Copyright 2023, " __license__ = "Apache 2.0" class Transformers(GPTBackend): file_extension='*' def __init__(self, config:dict) -> None: """Builds a GPT-J backend Args: config (dict): The configuration file """ super().__init__(config) self.config = config self.tokenizer = tokenizer = AutoTokenizer.from_pretrained(f"./models/transformers/{self.config['model']}/tokenizer.json", local_files_only=True) self.model = AutoModelForCausalLM.from_pretrained(f"./models/transformers/{self.config['model']}/model.bin", local_files_only=True) def generate(self, prompt:str, n_predict: int = 128, new_text_callback: Callable[[str], None] = bool, verbose: bool = False, **gpt_params ): """Generates text out of a prompt Args: prompt (str): The prompt to use for generation n_predict (int, optional): Number of tokens to prodict. Defaults to 128. new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None. verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False. """ inputs = self.tokenizer(prompt, return_tensors="pt").input_ids while len(inputs