###### # Project : GPT4ALL-UI # File : backend.py # Author : ParisNeo with the help of the community # Supported by Nomic-AI # Licence : Apache 2.0 # Description : # This is an interface class for GPT4All-ui backends. ###### from pathlib import Path from typing import Callable from pyllamacpp.model import Model from pyGpt4All.backend import GPTBackend import yaml __author__ = "parisneo" __github__ = "https://github.com/nomic-ai/gpt4all-ui" __copyright__ = "Copyright 2023, " __license__ = "Apache 2.0" backend_name = "LLAMACPP" class LLAMACPP(GPTBackend): file_extension='*.bin' def __init__(self, config:dict) -> None: """Builds a LLAMACPP backend Args: config (dict): The configuration file """ super().__init__(config, False) self.model = Model( model_path=f"./models/llama_cpp/{self.config['model']}", prompt_context="", prompt_prefix="", prompt_suffix="", n_ctx=self.config['ctx_size'], seed=self.config['seed'], ) def stop_generation(self): self.model._grab_text_callback() def generate(self, prompt:str, n_predict: int = 128, new_text_callback: Callable[[str], None] = bool, verbose: bool = False, **gpt_params ): """Generates text out of a prompt Args: prompt (str): The prompt to use for generation n_predict (int, optional): Number of tokens to prodict. Defaults to 128. new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None. verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False. """ try: self.model.reset() for tok in self.model.generate(prompt, n_predict=n_predict, temp=self.config['temperature'], top_k=self.config['top_k'], top_p=self.config['top_p'], repeat_penalty=self.config['repeat_penalty'], repeat_last_n = self.config['repeat_last_n'], n_threads=self.config['n_threads'], ): if not new_text_callback(tok): return except Exception as ex: print(ex) @staticmethod def get_available_models(): # Create the file path relative to the child class's directory backend_path = Path(__file__).parent file_path = backend_path/"models.yaml" with open(file_path, 'r') as file: yaml_data = yaml.safe_load(file) return yaml_data