// This requires axios // In the html don't forget to import axios.min.js cdn // // JavaScript equivalent of the ELF_GENERATION_FORMAT enum const ELF_GENERATION_FORMAT = { LOLLMS: 0, OPENAI: 1, OLLAMA: 2, LITELLM: 2 }; // JavaScript equivalent of the ELF_COMPLETION_FORMAT enum const ELF_COMPLETION_FORMAT = { Instruct: 0, Chat: 1 }; // Ensuring the objects are immutable Object.freeze(ELF_GENERATION_FORMAT); Object.freeze(ELF_COMPLETION_FORMAT); class LollmsClient { constructor( host_address = null, model_name = null, ctx_size = 4096, personality = -1, n_predict = 4096, temperature = 0.1, top_k = 50, top_p = 0.95, repeat_penalty = 0.8, repeat_last_n = 40, seed = null, n_threads = 8, service_key = "", default_generation_mode = ELF_GENERATION_FORMAT.LOLLMS ) { // Handle the import or initialization of tiktoken equivalent in JavaScript // this.tokenizer = new TikTokenJS('gpt-3.5-turbo-1106'); // This is hypothetical this.host_address = host_address; this.model_name = model_name; this.ctx_size = ctx_size; this.n_predict = n_predict?n_predict:4096; this.personality = personality; this.temperature = temperature; this.top_k = top_k; this.top_p = top_p; this.repeat_penalty = repeat_penalty; this.repeat_last_n = repeat_last_n; this.seed = seed; this.n_threads = n_threads; this.service_key = service_key; this.default_generation_mode = default_generation_mode; this.template = { start_header_id_template: "!@>", end_header_id_template: ": ", separator_template: "\n", start_user_header_id_template: "!@>", end_user_header_id_template: ": ", end_user_message_id_template: "", start_ai_header_id_template: "!@>", end_ai_header_id_template: ": ", end_ai_message_id_template: "", system_message_template: "system" } fetch('/template') .then((response) => { if (!response.ok) { throw new Error('Network response was not ok ' + response.statusText); } return response.json(); }) .then((data) => { console.log("data: ", data); this.template = data; }) .catch((error) => { console.error('Error fetching template:', error); }); } system_message(){ return this.template.start_header_id_template+this.template.system_message_template+this.template.end_header_id_template } ai_message(ai_name="assistant"){ return this.template.start_ai_header_id_template+ai_name+this.template.end_ai_header_id_template } user_message(user_name="user"){ return this.template.start_user_header_id_template+user_name+this.template.end_user_header_id_template } updateServerAddress(newAddress) { this.serverAddress = newAddress; } async tokenize(prompt) { /** * Tokenizes the given prompt using the model's tokenizer. * * @param {string} prompt - The input prompt to be tokenized. * @returns {Array} A list of tokens representing the tokenized prompt. */ const output = await axios.post("/lollms_tokenize", {"prompt": prompt}); return output.data.named_tokens } async detokenize(tokensList) { /** * Detokenizes the given list of tokens using the model's tokenizer. * * @param {Array} tokensList - A list of tokens to be detokenized. * @returns {string} The detokenized text as a string. */ const output = await axios.post("/lollms_detokenize", {"tokens": tokensList}); console.log(output.data.text) return output.data.text } generate(prompt, { n_predict = null, stream = false, temperature = 0.1, top_k = 50, top_p = 0.95, repeat_penalty = 0.8, repeat_last_n = 40, seed = null, n_threads = 8, service_key = "", streamingCallback = null } = {}) { switch (this.default_generation_mode) { case ELF_GENERATION_FORMAT.LOLLMS: return this.lollms_generate(prompt, this.host_address, this.model_name, -1, n_predict, stream, temperature, top_k, top_p, repeat_penalty, repeat_last_n, seed, n_threads, service_key, streamingCallback); case ELF_GENERATION_FORMAT.OPENAI: return this.openai_generate(prompt, this.host_address, this.model_name, -1, n_predict, stream, temperature, top_k, top_p, repeat_penalty, repeat_last_n, seed, n_threads, ELF_COMPLETION_FORMAT.INSTRUCT, service_key, streamingCallback); case ELF_GENERATION_FORMAT.OLLAMA: return this.ollama_generate(prompt, this.host_address, this.model_name, -1, n_predict, stream, temperature, top_k, top_p, repeat_penalty, repeat_last_n, seed, n_threads, ELF_COMPLETION_FORMAT.INSTRUCT, service_key, streamingCallback); case ELF_GENERATION_FORMAT.LITELLM: return this.litellm_generate(prompt, this.host_address, this.model_name, -1, n_predict, stream, temperature, top_k, top_p, repeat_penalty, repeat_last_n, seed, n_threads, ELF_COMPLETION_FORMAT.INSTRUCT, service_key, streamingCallback); default: throw new Error('Invalid generation mode'); } } generate_with_images(prompt, images, { n_predict = null, stream = false, temperature = 0.1, top_k = 50, top_p = 0.95, repeat_penalty = 0.8, repeat_last_n = 40, seed = null, n_threads = 8, service_key = "", streamingCallback = null } = {}) { switch (this.default_generation_mode) { case ELF_GENERATION_FORMAT.LOLLMS: return this.lollms_generate_with_images(prompt, images, this.host_address, this.model_name, -1, n_predict, stream, temperature, top_k, top_p, repeat_penalty, repeat_last_n, seed, n_threads, service_key, streamingCallback); default: throw new Error('Invalid generation mode'); } } async generateText(prompt, options = {}) { // Destructure with default values from `this` if not provided in `options` const { host_address = this.host_address, model_name = this.model_name, personality = this.personality, n_predict = this.n_predict, stream = false, temperature = this.temperature, top_k = this.top_k, top_p = this.top_p, repeat_penalty = this.repeat_penalty, repeat_last_n = this.repeat_last_n, seed = this.seed, n_threads = this.n_threads, service_key = this.service_key, streamingCallback = null } = options; try { const result = await this.lollms_generate( prompt, host_address, model_name, personality, n_predict, stream, temperature, top_k, top_p, repeat_penalty, repeat_last_n, seed, n_threads, service_key, streamingCallback ); return result; } catch (error) { // Handle any errors that occur during generation console.error('An error occurred during text generation:', error); throw error; // Re-throw the error if you want to allow the caller to handle it as well } } async lollms_generate(prompt, host_address = this.host_address, model_name = this.model_name, personality = this.personality, n_predict = this.n_predict, stream = false, temperature = this.temperature, top_k = this.top_k, top_p = this.top_p, repeat_penalty = this.repeat_penalty, repeat_last_n = this.repeat_last_n, seed = this.seed, n_threads = this.n_threads, service_key = this.service_key, streamingCallback = null) { let url; if(host_address!=null){ url = `${host_address}/lollms_generate`; } else{ url = `/lollms_generate`; } const headers = service_key !== "" ? { 'Content-Type': 'application/json; charset=utf-8', 'Authorization': `Bearer ${service_key}`, } : { 'Content-Type': 'application/json', }; console.log("n_predict:",n_predict) console.log("self.n_predict:",this.n_predict) const data = JSON.stringify({ prompt: prompt, model_name: model_name, personality: personality, n_predict: n_predict?n_predict:this.n_predict, stream: stream, temperature: temperature, top_k: top_k, top_p: top_p, repeat_penalty: repeat_penalty, repeat_last_n: repeat_last_n, seed: seed, n_threads: n_threads }); try { const response = await fetch(url, { method: 'POST', headers: headers, body: data }); // Check if the response is okay if (!response.ok) { throw new Error('Network response was not ok ' + response.statusText); } // Read the response as plaintext const responseBody = await response.text(); console.log(responseBody) return responseBody ; } catch (error) { console.error(error); return null; } } async lollms_generate_with_images(prompt, images, host_address = this.host_address, model_name = this.model_name, personality = this.personality, n_predict = this.n_predict, stream = false, temperature = this.temperature, top_k = this.top_k, top_p = this.top_p, repeat_penalty = this.repeat_penalty, repeat_last_n = this.repeat_last_n, seed = this.seed, n_threads = this.n_threads, service_key = this.service_key, streamingCallback = null) { let url; if(host_address!=null){ url = `${host_address}/lollms_generate_with_images`; } else{ url = `/lollms_generate_with_images`; } const headers = service_key !== "" ? { 'Content-Type': 'application/json; charset=utf-8', 'Authorization': `Bearer ${service_key}`, } : { 'Content-Type': 'application/json', }; console.log("n_predict:",n_predict) console.log("self.n_predict:",this.n_predict) const data = JSON.stringify({ prompt: prompt, images: images, model_name: model_name, personality: personality, n_predict: n_predict?n_predict:this.n_predict, stream: stream, temperature: temperature, top_k: top_k, top_p: top_p, repeat_penalty: repeat_penalty, repeat_last_n: repeat_last_n, seed: seed, n_threads: n_threads }); try { const response = await fetch(url, { method: 'POST', headers: headers, body: data }); // Check if the response is okay if (!response.ok) { throw new Error('Network response was not ok ' + response.statusText); } // Read the response as plaintext const responseBody = await response.text(); console.log(responseBody) return responseBody ; } catch (error) { console.error(error); return null; } } async openai_generate(prompt, host_address = this.host_address, model_name = this.model_name, personality = this.personality, n_predict = this.n_predict, stream = false, temperature = this.temperature, top_k = this.top_k, top_p = this.top_p, repeat_penalty = this.repeat_penalty, repeat_last_n = this.repeat_last_n, seed = this.seed, n_threads = this.n_threads, ELF_COMPLETION_FORMAT = "vllm instruct", service_key = this.service_key, streamingCallback = null) { const url = `${host_address}/generate_completion`; const headers = service_key !== "" ? { 'Content-Type': 'application/json; charset=utf-8', 'Authorization': `Bearer ${service_key}`, } : { 'Content-Type': 'application/json', }; const data = JSON.stringify({ prompt: prompt, model_name: model_name, personality: personality, n_predict: n_predict, stream: stream, temperature: temperature, top_k: top_k, top_p: top_p, repeat_penalty: repeat_penalty, repeat_last_n: repeat_last_n, seed: seed, n_threads: n_threads, completion_format: ELF_COMPLETION_FORMAT }); try { const response = await fetch(url, { method: 'POST', headers: headers, body: data }); if (stream && streamingCallback) { // Note: Streaming with Fetch API in the browser might not work as expected because Fetch API does not support HTTP/2 server push. // You would need a different approach for real-time streaming. streamingCallback(await response.json(), 'MSG_TYPE_CHUNK'); } else { return await response.json(); } } catch (error) { console.error("Error generating completion:", error); return null; } } async listMountedPersonalities(host_address = this.host_address) { const url = `${host_address}/list_mounted_personalities`; try { const response = await fetch(url); return await response.json(); } catch (error) { console.error(error); return null; } } async listModels(host_address = this.host_address) { const url = `${host_address}/list_models`; try { const response = await fetch(url); return await response.json(); } catch (error) { console.error(error); return null; } } } class TasksLibrary { constructor(lollms) { this.lollms = lollms; } async translateTextChunk(textChunk, outputLanguage = "french", host_address = null, model_name = null, temperature = 0.1, maxGenerationSize = 3000) { const translationPrompt = [ `!@>system:`, `Translate the following text to ${outputLanguage}.`, `Be faithful to the original text and do not add or remove any information.`, `Respond only with the translated text.`, `Do not add comments or explanations.`, `!@>text to translate:`, `${textChunk}`, `!@>translation:`, ].join("\n"); const translated = await this.lollms.generateText( translationPrompt, host_address, model_name, -1, // personality maxGenerationSize, // n_predict false, // stream temperature, // temperature undefined, // top_k, using undefined to fallback on LollmsClient's default undefined, // top_p, using undefined to fallback on LollmsClient's default undefined, // repeat_penalty, using undefined to fallback on LollmsClient's default undefined, // repeat_last_n, using undefined to fallback on LollmsClient's default undefined, // seed, using undefined to fallback on LollmsClient's default undefined, // n_threads, using undefined to fallback on LollmsClient's default undefined // service_key, using undefined to fallback on LollmsClient's default ); return translated; } async summarizeText(textChunk, summaryLength = "short", host_address = null, model_name = null, temperature = 0.1, maxGenerationSize = null) { const summaryPrompt = [ `system:`, `Summarize the following text in a ${summaryLength} manner.`, `Keep the summary concise and to the point.`, `Include all key points and do not add new information.`, `Respond only with the summary.`, `text to summarize:`, `${textChunk}`, `summary:`, ].join("\n"); const summary = await this.lollms.generateText( summaryPrompt, host_address, model_name, -1, // personality maxGenerationSize, // n_predict false, // stream temperature, // temperature undefined, // top_k, using undefined to fallback on LollmsClient's default undefined, // top_p, using undefined to fallback on LollmsClient's default undefined, // repeat_penalty, using undefined to fallback on LollmsClient's default undefined, // repeat_last_n, using undefined to fallback on LollmsClient's default undefined, // seed, using undefined to fallback on LollmsClient's default undefined, // n_threads, using undefined to fallback on LollmsClient's default undefined // service_key, using undefined to fallback on LollmsClient's default ); return summary; } yesNo(question, context = "", maxAnswerLength = 50, conditioning = "") { /** * Analyzes the user prompt and answers whether it is asking to generate an image. * * @param {string} question - The user's message. * @param {string} context - The context for the question. * @param {number} maxAnswerLength - The maximum length of the generated answer. * @param {string} conditioning - An optional system message to put at the beginning of the prompt. * @returns {boolean} True if the user prompt is asking to generate an image, False otherwise. */ return this.multichoiceQuestion(question, ["no", "yes"], context, maxAnswerLength, conditioning) > 0; } multichoiceQuestion(question, possibleAnswers, context = "", maxAnswerLength = 50, conditioning = "") { /** * Interprets a multi-choice question from a user's response. This function expects only one choice as true. * All other choices are considered false. If none are correct, returns -1. * * @param {string} question - The multi-choice question posed by the user. * @param {Array} possibleAnswers - A list containing all valid options for the chosen value. * @param {string} context - The context for the question. * @param {number} maxAnswerLength - Maximum string length allowed while interpreting the users' responses. * @param {string} conditioning - An optional system message to put at the beginning of the prompt. * @returns {number} Index of the selected option within the possibleAnswers list. Or -1 if there was no match found among any of them. */ const startHeaderIdTemplate = this.config.start_header_id_template; const endHeaderIdTemplate = this.config.end_header_id_template; const systemMessageTemplate = this.config.system_message_template; const choices = possibleAnswers.map((answer, index) => `${index}. ${answer}`).join("\n"); const elements = conditioning ? [conditioning] : []; elements.push( `${startHeaderIdTemplate}${systemMessageTemplate}${endHeaderIdTemplate}`, "Answer this multi choices question.", "Answer with an id from the possible answers.", "Do not answer with an id outside this possible answers." ); if (context) { elements.push( `${startHeaderIdTemplate}context${endHeaderIdTemplate}`, context ); } elements.push( `${startHeaderIdTemplate}question${endHeaderIdTemplate}${question}`, `${startHeaderIdTemplate}possible answers${endHeaderIdTemplate}`, choices, `${startHeaderIdTemplate}answer${endHeaderIdTemplate}` ); const prompt = this.buildPrompt(elements); const gen = this.lollms.generate(prompt, { n_predict: maxAnswerLength, temperature: 0.1, top_k: 50, top_p: 0.9, repeat_penalty: 1.0, repeat_last_n: 50, callback: this.sink }).trim().replace("", "").replace("", ""); const selection = gen.trim().split(" ")[0].replace(",", "").replace(".", ""); this.printPrompt("Multi choice selection", prompt + gen); try { return parseInt(selection, 10); } catch (error) { console.log("Model failed to answer the question"); return -1; } } buildPrompt(promptParts, sacrificeId = -1, contextSize = null, minimumSpareContextSize = null) { /** * Builds the prompt for code generation. * * @param {Array} promptParts - A list of strings representing the parts of the prompt. * @param {number} sacrificeId - The ID of the part to sacrifice. * @param {number} contextSize - The size of the context. * @param {number} minimumSpareContextSize - The minimum spare context size. * @returns {string} - The built prompt. */ if (contextSize === null) { contextSize = this.config.ctxSize; } if (minimumSpareContextSize === null) { minimumSpareContextSize = this.config.minNPredict; } if (sacrificeId === -1 || promptParts[sacrificeId].length < 50) { return promptParts.filter(s => s !== "").join("\n"); } else { const partTokens = []; let nbTokens = 0; for (let i = 0; i < promptParts.length; i++) { const part = promptParts[i]; const tk = this.lollms.tokenize(part); partTokens.push(tk); if (i !== sacrificeId) { nbTokens += tk.length; } } let sacrificeText = ""; if (partTokens[sacrificeId].length > 0) { const sacrificeTk = partTokens[sacrificeId]; const tokensToKeep = sacrificeTk.slice(-(contextSize - nbTokens - minimumSpareContextSize)); sacrificeText = this.lollms.detokenize(tokensToKeep); } promptParts[sacrificeId] = sacrificeText; return promptParts.filter(s => s !== "").join("\n"); } } extractCodeBlocks(text) { const codeBlockRegex = /```([\s\S]*?)```/g; const codeBlocks = []; let match; let index = 0; while ((match = codeBlockRegex.exec(text)) !== null) { const [fullMatch, content] = match; const blockLines = content.trim().split('\n'); let type = 'language-specific'; let blockContent = content.trim(); // Check if the first line is a language specifier if (blockLines.length > 1 && blockLines[0].trim().length > 0 && !blockLines[0].includes(' ')) { type = blockLines[0].trim().toLowerCase(); blockContent = blockLines.slice(1).join('\n').trim(); } codeBlocks.push({ index: index++, file_name: '', content: blockContent, type: type }); } return codeBlocks; } /** * Updates the given code based on the provided query string. * The query string can contain two types of modifications: * 1. FULL_REWRITE: Completely replaces the original code with the new code. * 2. REPLACE: Replaces specific code snippets within the original code. * * @param {string} originalCode - The original code to be updated. * @param {string} queryString - The string containing the update instructions. * @returns {object} - An object with the following properties: * - updatedCode: The updated code. * - modifications: An array of objects representing the changes made, each with properties 'oldCode' and 'newCode'. * - hasQuery: A boolean indicating whether the queryString contained any valid queries. */ updateCode(originalCode, queryString) { const queries = queryString.split('# REPLACE\n'); let updatedCode = originalCode; const modifications = []; // Check if there's a FULL_REWRITE first const fullRewriteStart = queryString.indexOf('# FULL_REWRITE'); if (fullRewriteStart !== -1) { const newCode = queryString.slice(fullRewriteStart + 14).trim(); updatedCode = newCode; modifications.push({ oldCode: originalCode, newCode }); return { updatedCode, modifications, hasQuery: true }; } if (queries.length === 1 && queries[0].trim() === '') { console.log("No queries detected"); return { updatedCode, modifications: [], hasQuery: false }; } for (const query of queries) { if (query.trim() === '') continue; const originalCodeStart = query.indexOf('# ORIGINAL\n') + 11; const originalCodeEnd = query.indexOf('\n# SET\n'); let oldCode = query.slice(originalCodeStart, originalCodeEnd); const newCodeStart = query.indexOf('# SET\n') + 6; const newCode = query.slice(newCodeStart); const modification = { oldCode: oldCode.trim(), newCode: newCode.trim() }; if(oldCode ==""){ oldCode = originalCode } console.log("oldCode:") console.log(oldCode) console.log("newCode:") console.log(newCode) console.log("Before update", updatedCode); if(oldCode===updatedCode){ console.log("Changing the whole content") updatedCode = newCode } else{ updatedCode = updatedCode.replace(oldCode, newCode.trim()); } console.log("After update", updatedCode); modifications.push(modification); } return { updatedCode, modifications, hasQuery: true }; } } class LOLLMSRAGClient { constructor(baseURL, apiKey) { this.baseURL = baseURL; this.apiKey = apiKey; } async request(endpoint, method = 'GET', body = null) { const headers = { 'Authorization': this.apiKey, 'Content-Type': 'application/json', }; const options = { method, headers, }; if (body) { options.body = JSON.stringify(body); } const response = await fetch(`${this.baseURL}${endpoint}`, options); if (!response.ok) { const errorData = await response.json(); throw new Error(`Error: ${errorData.detail || response.statusText}`); } return response.json(); } async addDocument(title, content, path = "unknown") { const document = { title, content, path }; return this.request('/add_document', 'POST', document); } async removeDocument(documentId) { return this.request(`/remove_document/${documentId}`, 'POST'); } async indexDatabase() { return this.request('/index_database', 'POST'); } async search(query) { const searchQuery = { query }; return this.request('/search', 'POST', searchQuery); } async wipeDatabase() { return this.request('/wipe_database', 'DELETE'); } } // Example usage: // const ragClient = new RAGClient('http://localhost:8000', 'your_bearer_token'); // ragClient.addDocument('My Title', 'This is the content of the document.') // .then(response => console.log(response)) // .catch(error => console.error(error));