###### # Project : GPT4ALL-UI # File : api.py # Author : ParisNeo with the help of the community # Supported by Nomic-AI # Licence : Apache 2.0 # Description : # A simple api to communicate with gpt4all-ui and its models. ###### import gc import sys from datetime import datetime from pyGpt4All.db import DiscussionsDB from pathlib import Path import importlib import markdown __author__ = "parisneo" __github__ = "https://github.com/nomic-ai/gpt4all-ui" __copyright__ = "Copyright 2023, " __license__ = "Apache 2.0" class GPT4AllAPI(): def __init__(self, config:dict, personality:dict, config_file_path:str) -> None: self.config = config self.personality = personality self.config_file_path = config_file_path self.cancel_gen = False # Keeping track of current discussion and message self.current_discussion = None self.current_message_id = 0 self.db_path = config["db_path"] # Create database object self.db = DiscussionsDB(self.db_path) # If the database is empty, populate it with tables self.db.populate() # This is used to keep track of messages self.full_message_list = [] # Select backend self.BACKENDS_LIST = {f.stem:f for f in Path("backends").iterdir() if f.is_dir() and f.stem!="__pycache__"} self.load_backend(self.BACKENDS_LIST[self.config["backend"]]) # Build chatbot self.chatbot_bindings = self.create_chatbot() print("Chatbot created successfully") # tests the model """ self.prepare_reception() self.discussion_messages = "Instruction: Act as gpt4all. A kind and helpful AI bot built to help users solve problems.\nuser: how to build a water rocket?\ngpt4all:" text = self.chatbot_bindings.generate( self.discussion_messages, new_text_callback=self.new_text_callback, n_predict=372, temp=self.config['temp'], top_k=self.config['top_k'], top_p=self.config['top_p'], repeat_penalty=self.config['repeat_penalty'], repeat_last_n = self.config['repeat_last_n'], #seed=self.config['seed'], n_threads=self.config['n_threads'] ) print(text) """ # generation status self.generating=False def load_backend(self, backend_path): # define the full absolute path to the module absolute_path = backend_path.resolve() # infer the module name from the file path module_name = backend_path.stem # use importlib to load the module from the file path loader = importlib.machinery.SourceFileLoader(module_name, str(absolute_path/"__init__.py")) backend_module = loader.load_module() backend_class = getattr(backend_module, backend_module.backend_name) self.backend = backend_class def create_chatbot(self): return self.backend(self.config) def condition_chatbot(self, conditionning_message): if self.current_discussion is None: self.current_discussion = self.db.load_last_discussion() message_id = self.current_discussion.add_message( "conditionner", conditionning_message, DiscussionsDB.MSG_TYPE_CONDITIONNING, 0, 0 ) self.current_message_id = message_id if self.personality["welcome_message"]!="": if self.personality["welcome_message"]!="": message_id = self.current_discussion.add_message( self.personality["name"], self.personality["welcome_message"], DiscussionsDB.MSG_TYPE_NORMAL, 0, self.current_message_id ) self.current_message_id = message_id return message_id def prepare_reception(self): self.bot_says = "" self.full_text = "" self.is_bot_text_started = False #self.current_message = message def create_new_discussion(self, title): self.current_discussion = self.db.create_discussion(title) # Get the current timestamp timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # Chatbot conditionning self.condition_chatbot(self.personality["personality_conditionning"]) return timestamp def prepare_query(self, message_id=-1): messages = self.current_discussion.get_messages() self.full_message_list = [] for message in messages: if message["id"]<= message_id or message_id==-1: if message["type"]!=self.db.MSG_TYPE_CONDITIONNING: if message["sender"]==self.personality["name"]: self.full_message_list.append(self.personality["ai_message_prefix"]+message["content"]) else: self.full_message_list.append(self.personality["user_message_prefix"] + message["content"]) link_text = self.personality["link_text"] if len(self.full_message_list) > self.config["nb_messages_to_remember"]: discussion_messages = self.personality["personality_conditionning"]+ link_text.join(self.full_message_list[-self.config["nb_messages_to_remember"]:]) else: discussion_messages = self.personality["personality_conditionning"]+ link_text.join(self.full_message_list) discussion_messages += link_text + self.personality["ai_message_prefix"] return discussion_messages # Removes the last return def get_discussion_to(self, message_id=-1): messages = self.current_discussion.get_messages() self.full_message_list = [] for message in messages: if message["id"]<= message_id or message_id==-1: if message["type"]!=self.db.MSG_TYPE_CONDITIONNING: if message["sender"]==self.personality["name"]: self.full_message_list.append(self.personality["ai_message_prefix"]+message["content"]) else: self.full_message_list.append(self.personality["user_message_prefix"] + message["content"]) link_text = self.personality["link_text"] if len(self.full_message_list) > self.config["nb_messages_to_remember"]: discussion_messages = self.personality["personality_conditionning"]+ link_text.join(self.full_message_list[-self.config["nb_messages_to_remember"]:]) else: discussion_messages = self.personality["personality_conditionning"]+ link_text.join(self.full_message_list) return discussion_messages # Removes the last return def remove_text_from_string(self, string, text_to_find): """ Removes everything from the first occurrence of the specified text in the string (case-insensitive). Parameters: string (str): The original string. text_to_find (str): The text to find in the string. Returns: str: The updated string. """ index = string.lower().find(text_to_find.lower()) if index != -1: string = string[:index] return string def new_text_callback(self, text: str): if self.cancel_gen: return False print(text, end="") sys.stdout.flush() if self.chatbot_bindings.inline: self.bot_says += text if not self.personality["user_message_prefix"].lower() in self.bot_says.lower(): self.socketio.emit('message', {'data': markdown.markdown(self.bot_says)}); if self.cancel_gen: print("Generation canceled") return False else: return True else: self.bot_says = self.remove_text_from_string(self.bot_says, self.personality["user_message_prefix"].lower()) print("The model is halucinating") self.socketio.emit('final', {'data': self.bot_says}) return False else: self.full_text += text if self.is_bot_text_started: self.bot_says += text if not self.personality["user_message_prefix"].lower() in self.bot_says.lower(): self.socketio.emit('message', {'data': markdown.markdown(self.bot_says)}); #self.socketio.emit('message', {'data': text}); if self.cancel_gen: print("Generation canceled") self.socketio.emit('final', {'data': self.bot_says}) return False else: return True else: self.bot_says = self.remove_text_from_string(self.bot_says, self.personality["user_message_prefix"].lower()) print("The model is halucinating") self.socketio.emit('final', {'data': self.bot_says}) self.cancel_gen=True return False #if self.current_message in self.full_text: if len(self.discussion_messages) < len(self.full_text): self.is_bot_text_started = True else: self.socketio.emit('waiter', {'wait': (len(self.discussion_messages)-len(self.full_text))/len(self.discussion_messages)}); def generate_message(self): self.generating=True gc.collect() total_n_predict = self.config['n_predict'] print(f"Generating {total_n_predict} outputs... ") print(f"Input text : {self.discussion_messages}") self.chatbot_bindings.generate( self.discussion_messages, new_text_callback=self.new_text_callback, n_predict=total_n_predict, temp=self.config['temp'], top_k=self.config['top_k'], top_p=self.config['top_p'], repeat_penalty=self.config['repeat_penalty'], repeat_last_n = self.config['repeat_last_n'], #seed=self.config['seed'], n_threads=self.config['n_threads'] ) self.generating=False