###### # Project : GPT4ALL-UI # File : binding.py # Author : ParisNeo with the help of the community # Supported by Nomic-AI # license : Apache 2.0 # Description : # This is an interface class for GPT4All-ui bindings. ###### from pathlib import Path from typing import Callable import inspect import yaml import sys __author__ = "parisneo" __github__ = "https://github.com/ParisNeo/gpt4all-ui" __copyright__ = "Copyright 2023, " __license__ = "Apache 2.0" class LLMBinding: file_extension='*.bin' binding_path = Path(__file__).parent def __init__(self, config:dict, inline:bool) -> None: self.config = config self.inline = inline def generate(self, prompt:str, n_predict: int = 128, new_text_callback: Callable[[str], None] = None, verbose: bool = False, **gpt_params ): """Generates text out of a prompt This should ber implemented by child class Args: prompt (str): The prompt to use for generation n_predict (int, optional): Number of tokens to prodict. Defaults to 128. new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None. verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False. """ pass def tokenize(self, prompt): """ Tokenizes the given prompt using the model's tokenizer. Args: prompt (str): The input prompt to be tokenized. Returns: list: A list of tokens representing the tokenized prompt. """ pass def detokenize(self, tokens_list): """ Detokenizes the given list of tokens using the model's tokenizer. Args: tokens_list (list): A list of tokens to be detokenized. Returns: str: The detokenized text as a string. """ pass @staticmethod def list_models(config:dict): """Lists the models for this binding """ models_dir = Path('./models')/config["binding_name"] # replace with the actual path to the models folder return [f.name for f in models_dir.glob(LLMBinding.file_extension)] @staticmethod def get_available_models(): # Create the file path relative to the child class's directory binding_path = Path(__file__).parent file_path = binding_path/"models.yaml" with open(file_path, 'r') as file: yaml_data = yaml.safe_load(file) return yaml_data