I'll create a comprehensive guide on how to build a LoLLMs binding. # Building a LoLLMs Binding - Developer Guide ## Introduction LoLLMs (Lord of Large Language Models) is a framework for interfacing with various language models. A binding is a connector that allows LoLLMs to interact with a specific model or API. ## Table of Contents 1. Basic Structure 2. Essential Components 3. Binding Types 4. Step-by-Step Guide 5. Advanced Features 6. Best Practices ## 1. Basic Structure A LoLLMs binding consists of the following files: ``` binding_name/ ├── __init__.py ├── binding.py ├── config.yaml ├── logo.png └── README.md ``` ## 2. Essential Components ### 2.1 Base Class All bindings must inherit from `LLMBinding`: ```python from lollms.binding import LLMBinding, LOLLMSConfig, BindingType from lollms.paths import LollmsPaths from lollms.config import BaseConfig, TypedConfig, ConfigTemplate, InstallOption class YourBinding(LLMBinding): def __init__(self, config: LOLLMSConfig, lollms_paths: LollmsPaths = None, installation_option:InstallOption=InstallOption.INSTALL_IF_NECESSARY, lollmsCom=None) -> None: # Your initialization code ``` ### 2.2 Configuration Define your binding's configuration using TypedConfig: ```python binding_config = TypedConfig( ConfigTemplate([ {"name":"api_key","type":"str","value":"", "help":"API key"}, {"name":"temperature","type":"float","value":0.7, "min":0.0, "max":1.0}, # Add more configuration parameters ]), BaseConfig(config={}) ) ``` ## 3. Binding Types LoLLMs supports different binding types: ```python class BindingType: TEXT = "text" # Text only TEXT_IMAGE = "text_image" # Text + image input MULTIMODAL = "multimodal" # Multiple input/output modalities ``` ## 4. Step-by-Step Guide ### 4.1 Create Basic Structure ```python class YourBinding(LLMBinding): def __init__(self, config, lollms_paths=None, installation_option=InstallOption.INSTALL_IF_NECESSARY, lollmsCom=None): binding_config = TypedConfig( ConfigTemplate([ # Your config parameters ]), BaseConfig(config={}) ) super().__init__( Path(__file__).parent, lollms_paths, config, binding_config, installation_option, supported_file_extensions=[''], lollmsCom=lollmsCom ) ``` ### 4.2 Implement Required Methods ```python def build_model(self, model_name=None): """Build or initialize the model""" super().build_model(model_name) # Your model initialization code return self def generate(self, prompt: str, n_predict: int = 128, callback: Callable[[str], None] = None, verbose: bool = False, **gpt_params) -> str: """Generate text from prompt""" # Your generation code def tokenize(self, prompt:str): """Tokenize text""" # Your tokenization code def detokenize(self, tokens_list:list): """Detokenize tokens""" # Your detokenization code def list_models(self): """List available models""" # Return list of model names def get_available_models(self, app:LoLLMsCom=None): """Get detailed model information""" # Return list of model details ``` ### 4.3 Installation Support ```python def install(self): """Install required packages""" super().install() PackageManager.install_package("your-required-package") ``` ## 5. Advanced Features ### 5.1 Image Support For bindings that support images: ```python def generate_with_images(self, prompt:str, images:list=[], n_predict: int = 128, callback: Callable[[str, int, dict], bool] = None, verbose: bool = False, **gpt_params): """Generate text from prompt and images""" # Your image processing code ``` ### 5.2 Embedding Support For models that support embeddings: ```python def embed(self, text): """Compute text embedding""" # Your embedding code return embedding_vector ``` ## 6. Best Practices ### 6.1 Error Handling Always implement proper error handling: ```python def generate(self, prompt, **kwargs): try: # Your generation code except Exception as ex: trace_exception(ex) self.error(ex) return "" ``` ### 6.2 Configuration Validation Validate configuration in settings_updated: ```python def settings_updated(self): if not self.binding_config.api_key: self.error("API key not set!") else: self.build_model() ``` ### 6.3 Documentation Always include: - README.md with usage instructions - Docstrings for methods - Configuration parameter descriptions - Requirements and dependencies ### 6.4 Status Updates Use provided methods for status updates: ```python self.info("Information message") self.warning("Warning message") self.error("Error message") self.success("Success message") ``` ## Example config.yaml ```yaml name: YourBinding author: Your Name version: 1.0.0 description: Description of your binding url: https://github.com/yourusername/your-binding license: Apache 2.0 ``` I'll add a detailed section about callbacks in LoLLMs bindings. # Callbacks in LoLLMs Bindings ## Introduction Callbacks are crucial in LoLLMs as they enable streaming text generation, allowing the UI to update in real-time and providing control over the generation process. ## Callback Types ```python from lollms.types import MSG_OPERATION_TYPE class MSG_OPERATION_TYPE(Enum): # Conditionning MSG_OPERATION_TYPE_ADD_CHUNK = 0 # Add a chunk to the current message MSG_OPERATION_TYPE_SET_CONTENT = 1 # sets the content of current message MSG_OPERATION_TYPE_SET_CONTENT_INVISIBLE_TO_AI = 2 # sets the content of current message as invisible to ai MSG_OPERATION_TYPE_SET_CONTENT_INVISIBLE_TO_USER = 3 # sets the content of current message as invisible to user # Informations MSG_OPERATION_TYPE_EXCEPTION = 4 # An exception occured MSG_OPERATION_TYPE_WARNING = 5 # A warning occured MSG_OPERATION_TYPE_INFO = 6 # An information to be shown to user # Steps MSG_OPERATION_TYPE_STEP = 7 # An instant step (a step that doesn't need time to be executed) MSG_OPERATION_TYPE_STEP_START = 8 # A step has started (the text contains an explanation of the step done by he personality) MSG_OPERATION_TYPE_STEP_PROGRESS = 9 # The progress value (the text contains a percentage and can be parsed by the reception) MSG_OPERATION_TYPE_STEP_END_SUCCESS = 10# A step has been done (the text contains an explanation of the step done by he personality) MSG_OPERATION_TYPE_STEP_END_FAILURE = 11# A step has been done (the text contains an explanation of the step done by he personality) #Extra MSG_OPERATION_TYPE_JSON_INFOS = 12# A JSON output that is useful for summarizing the process of generation used by personalities like chain of thoughts and tree of thooughts MSG_OPERATION_TYPE_REF = 13# References (in form of [text](path)) MSG_OPERATION_TYPE_CODE = 14# A javascript code to execute MSG_OPERATION_TYPE_UI = 15# A vue.js component to show (we need to build some and parse the text to show it) #Commands MSG_OPERATION_TYPE_NEW_MESSAGE = 16# A new message MSG_OPERATION_TYPE_FINISHED_MESSAGE = 17# End of current message ``` ## Implementation Examples ### 1. Basic Callback Usage ```python def generate(self, prompt: str, n_predict: int = 128, callback: Callable[[str, MSG_OPERATION_TYPE], bool] = None, verbose: bool = False, **gpt_params) -> str: """ Generate text with callback support Args: prompt: Input text n_predict: Max tokens to generate callback: Function called for each generated chunk verbose: Enable verbose output """ output = "" try: # Example streaming response for chunk in model.stream_generate(prompt): if callback is not None: # Call callback with chunk and operation type # If callback returns False, stop generation if not callback(chunk, MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_ADD_CHUNK): break output += chunk except Exception as ex: trace_exception(ex) self.error(ex) return output ``` ### 2. Advanced Callback Usage ```python def generate_with_images(self, prompt:str, images:list=[], n_predict: int = 128, callback: Callable[[str, MSG_OPERATION_TYPE, dict], bool] = None, verbose: bool = False, **gpt_params): """Generate text with images and advanced callback usage""" output = "" try: # Process response stream for chunk in model.stream_response(): # Add new chunk if chunk.type == 'text': if callback is not None: # Send chunk with metadata metadata = { 'token_count': len(self.tokenize(chunk.text)), 'finish_reason': chunk.finish_reason } if not callback(chunk.text, MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_ADD_CHUNK, metadata): break output += chunk.text # Replace last chunk (e.g., for word corrections) elif chunk.type == 'correction': if callback is not None: if not callback(chunk.text, MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_REPLACE_LAST): break output = output[:-len(chunk.previous)] + chunk.text # Add new line elif chunk.type == 'newline': if callback is not None: if not callback("\n", MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_NEW_LINE): break output += "\n" except Exception as ex: trace_exception(ex) self.error(ex) return output ``` ### 3. Callback with Progress Updates ```python def generate(self, prompt: str, n_predict: int = 128, callback=None, **kwargs): output = "" tokens_generated = 0 try: for chunk in model.stream_generate(prompt): tokens_generated += len(self.tokenize(chunk)) if callback is not None: # Include progress information metadata = { 'progress': tokens_generated / n_predict, 'tokens_generated': tokens_generated, 'max_tokens': n_predict } if not callback(chunk, MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_ADD_CHUNK, metadata): break output += chunk # Check token limit if tokens_generated >= n_predict: break except Exception as ex: trace_exception(ex) self.error(ex) return output ``` ## Best Practices for Callbacks 1. **Always Check Callback Return Value** ```python if callback is not None: if not callback(chunk, MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_ADD_CHUNK): break # Stop generation if callback returns False ``` 2. **Handle Different Operation Types** ```python # Add new content callback(chunk, MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_ADD_CHUNK) # Replace last chunk callback(corrected_text, MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_REPLACE_LAST) # Add new line callback("\n", MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_NEW_LINE) ``` 3. **Include Useful Metadata** ```python metadata = { 'progress': current_tokens / max_tokens, 'temperature': temperature, 'token_count': token_count, 'finish_reason': finish_reason } callback(chunk, operation_type, metadata) ``` 4. **Error Handling in Callbacks** ```python try: if callback is not None: if not callback(chunk, MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_ADD_CHUNK): break except Exception as ex: self.error(f"Callback error: {ex}") # Continue or break based on your needs ``` 5. **Respect Token Limits** ```python token_count = len(self.tokenize(output)) if token_count >= n_predict: if callback is not None: callback("", MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_ADD_CHUNK, {'finish_reason': 'length'}) break ``` ## Common Use Cases 1. **Progress Display** ```python def progress_callback(chunk, op_type, metadata=None): if metadata and 'progress' in metadata: print(f"Progress: {metadata['progress']*100:.2f}%") return True ``` 2. **Token Counting** ```python def token_callback(chunk, op_type, metadata=None): if metadata and 'token_count' in metadata: print(f"Tokens generated: {metadata['token_count']}") return True ``` 3. **UI Updates** ```python def ui_callback(chunk, op_type, metadata=None): if op_type == MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_ADD_CHUNK: update_ui_text(chunk) elif op_type == MSG_OPERATION_TYPE.MSG_OPERATION_TYPE_NEW_LINE: update_ui_newline() return True ``` Remember that callbacks are essential for: - Real-time text streaming - Progress monitoring - User interaction - Generation control - UI updates Using callbacks effectively makes your binding more interactive and user-friendly. ## Conclusion Building a LoLLMs binding requires: 1. Implementing the base interface 2. Proper configuration management 3. Error handling 4. Documentation 5. Following best practices For more examples, check the official LoLLMs bindings repository. Remember to test your binding thoroughly and maintain compatibility with the LoLLMs framework's conventions and interfaces. ## Support For help or questions about binding development: - Visit the LoLLMs GitHub repository - Join the community discussion - Check existing bindings for examples Happy binding development!