mirror of
https://github.com/ParisNeo/lollms-webui.git
synced 2024-12-18 20:17:50 +00:00
added training code
This commit is contained in:
parent
b4694fee2c
commit
584a1f6f03
26
app.py
26
app.py
@ -877,6 +877,32 @@ class LoLLMsWebUI(LoLLMsAPPI):
|
|||||||
return jsonify(models)
|
return jsonify(models)
|
||||||
|
|
||||||
|
|
||||||
|
def train(self):
|
||||||
|
form_data = request.form
|
||||||
|
|
||||||
|
# Create and populate the config file
|
||||||
|
config = {
|
||||||
|
'model_name': form_data['model_name'],
|
||||||
|
'tokenizer_name': form_data['tokenizer_name'],
|
||||||
|
'dataset_path': form_data['dataset_path'],
|
||||||
|
'max_length': form_data['max_length'],
|
||||||
|
'batch_size': form_data['batch_size'],
|
||||||
|
'lr': form_data['lr'],
|
||||||
|
'num_epochs': form_data['num_epochs'],
|
||||||
|
'output_dir': form_data['output_dir'],
|
||||||
|
}
|
||||||
|
|
||||||
|
with open('train/configs/train/local_cfg.yaml', 'w') as f:
|
||||||
|
yaml.dump(config, f)
|
||||||
|
|
||||||
|
# Trigger the train.py script
|
||||||
|
# Place your code here to run the train.py script with the created config file
|
||||||
|
# accelerate launch --dynamo_backend=inductor --num_processes=8 --num_machines=1 --machine_rank=0 --deepspeed_multinode_launcher standard --mixed_precision=bf16 --use_deepspeed --deepspeed_config_file=configs/deepspeed/ds_config_gptj.json train.py --config configs/train/finetune_gptj.yaml
|
||||||
|
|
||||||
|
subprocess.check_call(["accelerate","launch", "--dynamo_backend=inductor", "--num_processes=8", "--num_machines=1", "--machine_rank=0", "--deepspeed_multinode_launcher standard", "--mixed_precision=bf16", "--use_deepspeed", "--deepspeed_config_file=train/configs/deepspeed/ds_config_gptj.json", "train/train.py", "--config", "train/configs/train/local_cfg.yaml"])
|
||||||
|
|
||||||
|
return jsonify({'message': 'Training started'})
|
||||||
|
|
||||||
def get_config(self):
|
def get_config(self):
|
||||||
return jsonify(self.config.to_dict())
|
return jsonify(self.config.to_dict())
|
||||||
|
|
||||||
|
2
train/.gitignore
vendored
Normal file
2
train/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
|||||||
|
output
|
||||||
|
!output/.keep
|
48
train/configs/deepspeed/ds_config.yaml
Normal file
48
train/configs/deepspeed/ds_config.yaml
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
{
|
||||||
|
"train_batch_size": "auto",
|
||||||
|
"gradient_accumulation_steps": "auto",
|
||||||
|
"train_micro_batch_size_per_gpu": "auto",
|
||||||
|
"fp16": {
|
||||||
|
"enabled": "auto",
|
||||||
|
"min_loss_scale": 1,
|
||||||
|
"loss_scale_window": 1000,
|
||||||
|
"hysteresis": 2,
|
||||||
|
"initial_scale_power": 32
|
||||||
|
},
|
||||||
|
"bf16": {
|
||||||
|
"enabled": "auto"
|
||||||
|
},
|
||||||
|
"gradient_clipping": 1,
|
||||||
|
"zero_optimization": {
|
||||||
|
"stage": 2,
|
||||||
|
"offload_param": {
|
||||||
|
"device": "none"
|
||||||
|
},
|
||||||
|
"offload_optimizer": {
|
||||||
|
"device": "none"
|
||||||
|
},
|
||||||
|
"allgather_partitions": true,
|
||||||
|
"allgather_bucket_size": 5e8,
|
||||||
|
"contiguous_gradients": true
|
||||||
|
},
|
||||||
|
"optimizer": {
|
||||||
|
"type": "AdamW",
|
||||||
|
"params": {
|
||||||
|
"lr": "auto",
|
||||||
|
"betas": [
|
||||||
|
0.9,
|
||||||
|
0.999
|
||||||
|
],
|
||||||
|
"eps": 1e-08
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"scheduler": {
|
||||||
|
"type": "WarmupLR",
|
||||||
|
"params": {
|
||||||
|
"warmup_min_lr": 0,
|
||||||
|
"warmup_max_lr": "auto",
|
||||||
|
"warmup_num_steps": "auto",
|
||||||
|
"warmup_type": "linear"
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
1
train/configs/train/.gitignore
vendored
Normal file
1
train/configs/train/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
local_cfg.yaml
|
29
train/configs/train/finetune.yaml
Normal file
29
train/configs/train/finetune.yaml
Normal file
@ -0,0 +1,29 @@
|
|||||||
|
# model/tokenizer
|
||||||
|
model_name: # add model here
|
||||||
|
tokenizer_name: # add model here
|
||||||
|
gradient_checkpointing: true
|
||||||
|
save_name: # CHANGE
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
streaming: false
|
||||||
|
num_proc: 64
|
||||||
|
dataset_path: # update
|
||||||
|
max_length: 1024
|
||||||
|
batch_size: 32
|
||||||
|
|
||||||
|
# train dynamics
|
||||||
|
lr: 5.0e-5
|
||||||
|
eval_every: 800
|
||||||
|
eval_steps: 100
|
||||||
|
save_every: 800
|
||||||
|
output_dir: # CHANGE
|
||||||
|
checkpoint: null
|
||||||
|
lora: false
|
||||||
|
warmup_steps: 100
|
||||||
|
num_epochs: 2
|
||||||
|
|
||||||
|
# logging
|
||||||
|
wandb: true
|
||||||
|
wandb_entity: # update
|
||||||
|
wandb_project_name: # update
|
||||||
|
seed: 42
|
31
train/configs/train/finetune_lora.yaml
Normal file
31
train/configs/train/finetune_lora.yaml
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
# model/tokenizer
|
||||||
|
model_name: # update
|
||||||
|
tokenizer_name: # update
|
||||||
|
gradient_checkpointing: false
|
||||||
|
save_name: # CHANGE
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
streaming: false
|
||||||
|
num_proc: 64
|
||||||
|
dataset_path: # CHANGE
|
||||||
|
max_length: 1024
|
||||||
|
batch_size: 4
|
||||||
|
|
||||||
|
# train dynamics
|
||||||
|
lr: 5.0e-5
|
||||||
|
min_lr: 0
|
||||||
|
weight_decay: 0.0
|
||||||
|
eval_every: 2000
|
||||||
|
eval_steps: 100
|
||||||
|
save_every: 2000
|
||||||
|
output_dir: # CHANGE
|
||||||
|
checkpoint: null
|
||||||
|
lora: true
|
||||||
|
warmup_steps: 100
|
||||||
|
num_epochs: 2
|
||||||
|
|
||||||
|
# logging
|
||||||
|
wandb: true
|
||||||
|
wandb_entity: # update
|
||||||
|
wandb_project_name: # update
|
||||||
|
seed: 42
|
31
train/configs/train/finetune_lora_ airoboros-7b-gpt4.yaml
Normal file
31
train/configs/train/finetune_lora_ airoboros-7b-gpt4.yaml
Normal file
@ -0,0 +1,31 @@
|
|||||||
|
# model/tokenizer
|
||||||
|
model_name: jondurbin/airoboros-7b-gpt4 # update
|
||||||
|
tokenizer_name: jondurbin/airoboros-7b-gpt4 # update
|
||||||
|
gradient_checkpointing: false
|
||||||
|
save_name: parisneo-7b_gpt42_lora # CHANGE
|
||||||
|
|
||||||
|
# dataset
|
||||||
|
streaming: false
|
||||||
|
num_proc: 64
|
||||||
|
dataset_path: # CHANGE
|
||||||
|
max_length: 1024
|
||||||
|
batch_size: 4
|
||||||
|
|
||||||
|
# train dynamics
|
||||||
|
lr: 5.0e-5
|
||||||
|
min_lr: 0
|
||||||
|
weight_decay: 0.0
|
||||||
|
eval_every: 2000
|
||||||
|
eval_steps: 100
|
||||||
|
save_every: 2000
|
||||||
|
output_dir: output # CHANGE
|
||||||
|
checkpoint: null
|
||||||
|
lora: true
|
||||||
|
warmup_steps: 100
|
||||||
|
num_epochs: 2
|
||||||
|
|
||||||
|
# logging
|
||||||
|
wandb: false # update if you want to use weights and biases
|
||||||
|
wandb_entity: # update
|
||||||
|
wandb_project_name: # update
|
||||||
|
seed: 42
|
15
train/requirements.txt
Normal file
15
train/requirements.txt
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
accelerate
|
||||||
|
datasets
|
||||||
|
torchmetrics
|
||||||
|
evaluate
|
||||||
|
transformers>=4.28.0
|
||||||
|
wandb
|
||||||
|
pip
|
||||||
|
peft
|
||||||
|
nodelist-inflator
|
||||||
|
deepspeed
|
||||||
|
sentencepiece
|
||||||
|
jsonlines
|
||||||
|
nomic
|
||||||
|
scikit-learn
|
||||||
|
matplotlib
|
233
train/train.py
Normal file
233
train/train.py
Normal file
@ -0,0 +1,233 @@
|
|||||||
|
import os
|
||||||
|
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler, LlamaForCausalLM
|
||||||
|
import torch
|
||||||
|
from torch.optim import AdamW
|
||||||
|
from argparse import ArgumentParser
|
||||||
|
from read import read_config
|
||||||
|
from accelerate import Accelerator
|
||||||
|
from accelerate.utils import DummyScheduler, DummyOptim, set_seed
|
||||||
|
from peft import get_peft_model, LoraConfig, TaskType
|
||||||
|
from data import load_data
|
||||||
|
from torchmetrics import MeanMetric
|
||||||
|
from tqdm import tqdm
|
||||||
|
import wandb
|
||||||
|
|
||||||
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
|
|
||||||
|
def format_metrics(metrics, split, prefix=""):
|
||||||
|
log = f"[{split}]" + prefix
|
||||||
|
log += " ".join([f"{key}: {value:.4f}" for key, value in metrics.items()])
|
||||||
|
|
||||||
|
return log
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate(model, val_dataloader):
|
||||||
|
model.eval()
|
||||||
|
val_loss = MeanMetric(nan_strategy="error").to(model.device)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
for batch in tqdm(val_dataloader):
|
||||||
|
loss = model(**batch).loss
|
||||||
|
|
||||||
|
loss_values = accelerator.gather_for_metrics({"loss": loss.detach()})
|
||||||
|
|
||||||
|
val_loss.update(loss_values["loss"])
|
||||||
|
|
||||||
|
return val_loss
|
||||||
|
|
||||||
|
|
||||||
|
def train(accelerator, config):
|
||||||
|
set_seed(config['seed'])
|
||||||
|
|
||||||
|
accelerator.print(config)
|
||||||
|
accelerator.print(f"Using {accelerator.num_processes} GPUs")
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'])
|
||||||
|
# if no pad token, set it to eos
|
||||||
|
if tokenizer.pad_token is None:
|
||||||
|
tokenizer.pad_token = tokenizer.eos_token
|
||||||
|
|
||||||
|
|
||||||
|
with accelerator.main_process_first():
|
||||||
|
train_dataloader, val_dataloader = load_data(config, tokenizer)
|
||||||
|
|
||||||
|
|
||||||
|
checkpoint = config["gradient_checkpointing"]
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
|
||||||
|
use_cache=False if checkpoint else True,
|
||||||
|
trust_remote_code=True)
|
||||||
|
if checkpoint:
|
||||||
|
model.gradient_checkpointing_enable()
|
||||||
|
|
||||||
|
if config["lora"]:
|
||||||
|
peft_config = LoraConfig(
|
||||||
|
# should R be configurable?
|
||||||
|
task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
|
||||||
|
)
|
||||||
|
model = get_peft_model(model, peft_config)
|
||||||
|
model.print_trainable_parameters()
|
||||||
|
|
||||||
|
optimizer_cls = (
|
||||||
|
AdamW
|
||||||
|
if accelerator.state.deepspeed_plugin is None
|
||||||
|
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
||||||
|
else DummyOptim
|
||||||
|
)
|
||||||
|
|
||||||
|
# karpathy doesn't decay embeddding, maybe we should exclude
|
||||||
|
# https://github.com/karpathy/minGPT/commit/bbbdac74fa9b2e55574d70056163ffbae42310c1#diff-2075fa9c224b395be5bda85544dd36572b59c76c54562819eadadbf268602834R157s
|
||||||
|
optimizer = optimizer_cls(model.parameters(), lr=config["lr"], weight_decay=config["weight_decay"])
|
||||||
|
|
||||||
|
if accelerator.state.deepspeed_plugin is not None:
|
||||||
|
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
|
||||||
|
"gradient_accumulation_steps"
|
||||||
|
]
|
||||||
|
|
||||||
|
# decay to min_lr instead of 0
|
||||||
|
lr_ratio = config["min_lr"] / config["lr"]
|
||||||
|
accelerator.print(f"Len of train_dataloader: {len(train_dataloader)}")
|
||||||
|
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * config["num_epochs"]
|
||||||
|
# instead of decaying to zero, decay to ratio of min_lr / lr
|
||||||
|
total_num_steps += int(total_num_steps * lr_ratio) + config["warmup_steps"]
|
||||||
|
accelerator.print(f"Total training steps: {total_num_steps}")
|
||||||
|
|
||||||
|
# Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler
|
||||||
|
if (
|
||||||
|
accelerator.state.deepspeed_plugin is None
|
||||||
|
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
||||||
|
):
|
||||||
|
scheduler = get_scheduler(
|
||||||
|
name="cosine",
|
||||||
|
optimizer=optimizer,
|
||||||
|
num_warmup_steps=config["warmup_steps"] * accelerator.num_processes,
|
||||||
|
num_training_steps=total_num_steps,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
scheduler = DummyScheduler(
|
||||||
|
optimizer, total_num_steps=config["warmup_steps"], warmup_num_steps=config["warmup_steps"]
|
||||||
|
)
|
||||||
|
|
||||||
|
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
|
||||||
|
model, optimizer, train_dataloader, val_dataloader, scheduler
|
||||||
|
)
|
||||||
|
|
||||||
|
# setup for saving training states in case preemption
|
||||||
|
accelerator.register_for_checkpointing(scheduler)
|
||||||
|
|
||||||
|
if config["checkpoint"]:
|
||||||
|
accelerator.load_state(config["checkpoint"])
|
||||||
|
accelerator.print(f"Resumed from checkpoint: {config['checkpoint']}")
|
||||||
|
path = os.path.basename(config["train_args"]["resume_from_checkpoint"])
|
||||||
|
training_difference = os.path.splitext(path)[0]
|
||||||
|
resume_step = int(training_difference.replace("step_", ""))
|
||||||
|
accelerator.skip_first_batches(train_dataloader, resume_step)
|
||||||
|
accelerator.print(f"Resuming from step {resume_step}")
|
||||||
|
|
||||||
|
|
||||||
|
# log gradients
|
||||||
|
if accelerator.is_main_process and config["wandb"]:
|
||||||
|
wandb.watch(model, log_freq=config["log_grads_every"], log="all")
|
||||||
|
|
||||||
|
for epoch in range(config["num_epochs"]):
|
||||||
|
train_loss = MeanMetric(nan_strategy="error").to(model.device)
|
||||||
|
for step, batch in enumerate(tqdm(train_dataloader)):
|
||||||
|
model.train()
|
||||||
|
outputs = model(**batch)
|
||||||
|
loss = outputs.loss
|
||||||
|
|
||||||
|
# gather loss before backprop in case of gradient accumulation
|
||||||
|
loss_values = accelerator.gather_for_metrics({"loss": loss.detach().float()})
|
||||||
|
train_loss.update(loss_values["loss"])
|
||||||
|
|
||||||
|
loss = loss / gradient_accumulation_steps
|
||||||
|
accelerator.backward(loss)
|
||||||
|
# get gradient norm of all params
|
||||||
|
|
||||||
|
# log LR in case something weird happens
|
||||||
|
if step > 0 and step % (config["eval_every"] // 10) == 0:
|
||||||
|
if config["wandb"]:
|
||||||
|
curr_step = step + epoch * len(train_dataloader)
|
||||||
|
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=curr_step)
|
||||||
|
|
||||||
|
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
|
||||||
|
optimizer.step()
|
||||||
|
scheduler.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
|
||||||
|
if step > 0 and step % config["save_every"] == 0:
|
||||||
|
curr_step = step + epoch * len(train_dataloader)
|
||||||
|
accelerator.save_state(f"{config['output_dir']}/step_{curr_step}")
|
||||||
|
|
||||||
|
if step > 0 and (step % config["eval_every"] == 0 or step == len(train_dataloader) - 1):
|
||||||
|
val_loss = evaluate(model, val_dataloader)
|
||||||
|
|
||||||
|
log_train = {
|
||||||
|
"train_loss": train_loss.compute()
|
||||||
|
}
|
||||||
|
log_val = {
|
||||||
|
"val_loss": val_loss.compute()
|
||||||
|
}
|
||||||
|
|
||||||
|
if config["wandb"]:
|
||||||
|
curr_step = step + epoch * len(train_dataloader)
|
||||||
|
accelerator.log({**log_train, **log_val}, step=curr_step)
|
||||||
|
|
||||||
|
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
|
||||||
|
accelerator.print(format_metrics(log_train, "train", f" step {step} "))
|
||||||
|
accelerator.print(format_metrics(log_val, "val", f" step {step} "))
|
||||||
|
|
||||||
|
train_loss.reset()
|
||||||
|
|
||||||
|
accelerator.print(f"Epoch {epoch} finished")
|
||||||
|
accelerator.print(f"Pushing to HF hub")
|
||||||
|
accelerator.wait_for_everyone()
|
||||||
|
unwrapped_model = accelerator.unwrap_model(model)
|
||||||
|
try:
|
||||||
|
if accelerator.is_main_process:
|
||||||
|
unwrapped_model.push_to_hub(config["save_name"] + f"-epoch_{epoch}", private=True)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
accelerator.print(e)
|
||||||
|
accelerator.print(f"Failed to push to hub")
|
||||||
|
|
||||||
|
unwrapped_model.save_pretrained(
|
||||||
|
f"{config['output_dir']}/epoch_{epoch}",
|
||||||
|
is_main_process=accelerator.is_main_process,
|
||||||
|
save_function=accelerator.save,
|
||||||
|
state_dict=accelerator.get_state_dict(model),
|
||||||
|
)
|
||||||
|
|
||||||
|
accelerator.wait_for_everyone()
|
||||||
|
unwrapped_model = accelerator.unwrap_model(model)
|
||||||
|
unwrapped_model.save_pretrained(
|
||||||
|
f"{config['output_dir']}/final",
|
||||||
|
is_main_process=accelerator.is_main_process,
|
||||||
|
save_function=accelerator.save,
|
||||||
|
state_dict=accelerator.get_state_dict(model),
|
||||||
|
)
|
||||||
|
|
||||||
|
accelerator.end_training()
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# parse arguments by reading in a config
|
||||||
|
parser = ArgumentParser()
|
||||||
|
parser.add_argument("--config", type=str, default="config.yaml")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
config = read_config(args.config)
|
||||||
|
|
||||||
|
if config["wandb"]:
|
||||||
|
accelerator = Accelerator(log_with="wandb")
|
||||||
|
accelerator.init_trackers(
|
||||||
|
project_name=config["wandb_project_name"],
|
||||||
|
config=config,
|
||||||
|
init_kwargs={"wandb": {"entity": config["wandb_entity"]}},
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
accelerator = Accelerator()
|
||||||
|
|
||||||
|
train(accelerator, config=config)
|
1
web/dist/assets/index-488cca87.css
vendored
1
web/dist/assets/index-488cca87.css
vendored
File diff suppressed because one or more lines are too long
1
web/dist/assets/index-54621153.css
vendored
Normal file
1
web/dist/assets/index-54621153.css
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
4
web/dist/index.html
vendored
4
web/dist/index.html
vendored
@ -6,8 +6,8 @@
|
|||||||
|
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||||
<title>GPT4All - WEBUI</title>
|
<title>GPT4All - WEBUI</title>
|
||||||
<script type="module" crossorigin src="/assets/index-0344eb9b.js"></script>
|
<script type="module" crossorigin src="/assets/index-f5f472ed.js"></script>
|
||||||
<link rel="stylesheet" href="/assets/index-488cca87.css">
|
<link rel="stylesheet" href="/assets/index-54621153.css">
|
||||||
</head>
|
</head>
|
||||||
<body>
|
<body>
|
||||||
<div id="app"></div>
|
<div id="app"></div>
|
||||||
|
@ -1,16 +1,159 @@
|
|||||||
<template>
|
<template>
|
||||||
<div>
|
<div class="container overflow-y-scroll flex flex-col no-scrollbar shadow-lg p-10 pt-0">
|
||||||
Training
|
<form @submit.prevent="submitForm" class="max-w-md mx-auto">
|
||||||
|
<!-- Model/Tokenizer -->
|
||||||
|
<div class="mb-4">
|
||||||
|
<label for="model_name" class="text-sm">Model Name:</label>
|
||||||
|
<input
|
||||||
|
type="text"
|
||||||
|
id="model_name"
|
||||||
|
v-model="model_name"
|
||||||
|
required
|
||||||
|
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||||
|
>
|
||||||
|
</div>
|
||||||
|
<div class="mb-4">
|
||||||
|
<label for="tokenizer_name" class="text-sm">Tokenizer Name:</label>
|
||||||
|
<input
|
||||||
|
type="text"
|
||||||
|
id="tokenizer_name"
|
||||||
|
v-model="tokenizer_name"
|
||||||
|
required
|
||||||
|
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||||
|
>
|
||||||
</div>
|
</div>
|
||||||
</template>
|
|
||||||
|
|
||||||
<script>
|
<!-- Dataset -->
|
||||||
export default {
|
<div class="mb-4">
|
||||||
setup () {
|
<label for="dataset_path" class="text-sm">Dataset:</label>
|
||||||
|
<input
|
||||||
|
type="file"
|
||||||
|
id="dataset_path"
|
||||||
|
ref="dataset_path"
|
||||||
|
accept=".parquet"
|
||||||
|
v-on:change="selectDatasetPath"
|
||||||
|
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||||
|
>
|
||||||
|
<p class="mt-2 text-xs">Selected File: {{ selectedDatasetPath }}</p>
|
||||||
|
</div>
|
||||||
|
<div class="mb-4">
|
||||||
|
<label for="max_length" class="text-sm">Max Length:</label>
|
||||||
|
<input
|
||||||
|
type="number"
|
||||||
|
id="max_length"
|
||||||
|
v-model.number="max_length"
|
||||||
|
required
|
||||||
|
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||||
|
>
|
||||||
|
</div>
|
||||||
|
<div class="mb-4">
|
||||||
|
<label for="batch_size" class="text-sm">Batch Size:</label>
|
||||||
|
<input
|
||||||
|
type="number"
|
||||||
|
id="batch_size"
|
||||||
|
v-model.number="batch_size"
|
||||||
|
required
|
||||||
|
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||||
|
>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<!-- Train Dynamics -->
|
||||||
|
<div class="mb-4">
|
||||||
|
<label for="lr" class="text-sm">Learning Rate:</label>
|
||||||
|
<input
|
||||||
|
type="number"
|
||||||
|
id="lr"
|
||||||
|
v-model.number="lr"
|
||||||
|
required
|
||||||
|
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||||
|
>
|
||||||
|
</div>
|
||||||
|
<div class="mb-4">
|
||||||
|
<label for="num_epochs" class="text-sm">Number of Epochs:</label>
|
||||||
|
<input
|
||||||
|
type="number"
|
||||||
|
id="num_epochs"
|
||||||
|
v-model.number="num_epochs"
|
||||||
|
required
|
||||||
|
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||||
|
>
|
||||||
|
</div>
|
||||||
|
|
||||||
return {}
|
<!-- Logging -->
|
||||||
|
<div class="mb-4">
|
||||||
|
<label for="output_dir" class="text-sm">Output Directory:</label>
|
||||||
|
<input
|
||||||
|
type="text"
|
||||||
|
id="output_dir"
|
||||||
|
v-model="selectedFolder"
|
||||||
|
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||||
|
placeholder="Enter or select the output folder"
|
||||||
|
>
|
||||||
|
<input
|
||||||
|
type="file"
|
||||||
|
id="folder_selector"
|
||||||
|
ref="folder_selector"
|
||||||
|
style="display: none"
|
||||||
|
webkitdirectory
|
||||||
|
v-on:change="selectOutputDirectory"
|
||||||
|
>
|
||||||
|
<button type="button" @click="openFolderSelector" class="bg-blue-500 text-white px-4 py-2 rounded">Select Folder</button>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<button type="submit" class="bg-blue-500 text-white px-4 py-2 rounded">Train LLM</button>
|
||||||
|
</form>
|
||||||
|
</div>
|
||||||
|
</template>
|
||||||
|
|
||||||
|
<script>
|
||||||
|
export default {
|
||||||
|
data() {
|
||||||
|
return {
|
||||||
|
model_name: 'jondurbin/airoboros-7b-gpt4',
|
||||||
|
tokenizer_name: 'jondurbin/airoboros-7b-gpt4',
|
||||||
|
dataset_path: '',
|
||||||
|
max_length: 1024,
|
||||||
|
batch_size: 4,
|
||||||
|
lr: 5.0e-5,
|
||||||
|
num_epochs: 2,
|
||||||
|
selectedFolder: '',
|
||||||
|
selectedDatasetPath: '',
|
||||||
|
};
|
||||||
|
},
|
||||||
|
methods: {
|
||||||
|
submitForm() {
|
||||||
|
const formData = {
|
||||||
|
model_name: this.model_name,
|
||||||
|
tokenizer_name: this.tokenizer_name,
|
||||||
|
dataset_path: this.selectedDatasetPath,
|
||||||
|
max_length: this.max_length,
|
||||||
|
batch_size: this.batch_size,
|
||||||
|
lr: this.lr,
|
||||||
|
num_epochs: this.num_epochs,
|
||||||
|
output_dir: this.selectedFolder,
|
||||||
|
};
|
||||||
|
|
||||||
|
// Send the form data to the backend
|
||||||
|
// ...
|
||||||
|
},
|
||||||
|
openFolderSelector() {
|
||||||
|
this.$refs.folder_selector.click();
|
||||||
|
},
|
||||||
|
selectOutputDirectory(event) {
|
||||||
|
console.log("here")
|
||||||
|
const folderPath = event.target.files[0]?.path;
|
||||||
|
console.log(folderPath)
|
||||||
|
if (folderPath) {
|
||||||
|
this.selectedFolder = folderPath;
|
||||||
}
|
}
|
||||||
}
|
},
|
||||||
</script>
|
selectDatasetPath(event) {
|
||||||
|
const files = event.target.files;
|
||||||
|
if (files.length > 0) {
|
||||||
|
this.selectedDatasetPath = files[0].webkitRelativePath;
|
||||||
|
}
|
||||||
|
},
|
||||||
|
},
|
||||||
|
};
|
||||||
|
</script>
|
||||||
|
|
Loading…
Reference in New Issue
Block a user