mirror of
https://github.com/ParisNeo/lollms-webui.git
synced 2024-12-18 12:16:22 +00:00
added training code
This commit is contained in:
parent
b4694fee2c
commit
584a1f6f03
26
app.py
26
app.py
@ -876,6 +876,32 @@ class LoLLMsWebUI(LoLLMsAPPI):
|
||||
print(f"Problem with model : {model}")
|
||||
return jsonify(models)
|
||||
|
||||
|
||||
def train(self):
|
||||
form_data = request.form
|
||||
|
||||
# Create and populate the config file
|
||||
config = {
|
||||
'model_name': form_data['model_name'],
|
||||
'tokenizer_name': form_data['tokenizer_name'],
|
||||
'dataset_path': form_data['dataset_path'],
|
||||
'max_length': form_data['max_length'],
|
||||
'batch_size': form_data['batch_size'],
|
||||
'lr': form_data['lr'],
|
||||
'num_epochs': form_data['num_epochs'],
|
||||
'output_dir': form_data['output_dir'],
|
||||
}
|
||||
|
||||
with open('train/configs/train/local_cfg.yaml', 'w') as f:
|
||||
yaml.dump(config, f)
|
||||
|
||||
# Trigger the train.py script
|
||||
# Place your code here to run the train.py script with the created config file
|
||||
# accelerate launch --dynamo_backend=inductor --num_processes=8 --num_machines=1 --machine_rank=0 --deepspeed_multinode_launcher standard --mixed_precision=bf16 --use_deepspeed --deepspeed_config_file=configs/deepspeed/ds_config_gptj.json train.py --config configs/train/finetune_gptj.yaml
|
||||
|
||||
subprocess.check_call(["accelerate","launch", "--dynamo_backend=inductor", "--num_processes=8", "--num_machines=1", "--machine_rank=0", "--deepspeed_multinode_launcher standard", "--mixed_precision=bf16", "--use_deepspeed", "--deepspeed_config_file=train/configs/deepspeed/ds_config_gptj.json", "train/train.py", "--config", "train/configs/train/local_cfg.yaml"])
|
||||
|
||||
return jsonify({'message': 'Training started'})
|
||||
|
||||
def get_config(self):
|
||||
return jsonify(self.config.to_dict())
|
||||
|
2
train/.gitignore
vendored
Normal file
2
train/.gitignore
vendored
Normal file
@ -0,0 +1,2 @@
|
||||
output
|
||||
!output/.keep
|
48
train/configs/deepspeed/ds_config.yaml
Normal file
48
train/configs/deepspeed/ds_config.yaml
Normal file
@ -0,0 +1,48 @@
|
||||
{
|
||||
"train_batch_size": "auto",
|
||||
"gradient_accumulation_steps": "auto",
|
||||
"train_micro_batch_size_per_gpu": "auto",
|
||||
"fp16": {
|
||||
"enabled": "auto",
|
||||
"min_loss_scale": 1,
|
||||
"loss_scale_window": 1000,
|
||||
"hysteresis": 2,
|
||||
"initial_scale_power": 32
|
||||
},
|
||||
"bf16": {
|
||||
"enabled": "auto"
|
||||
},
|
||||
"gradient_clipping": 1,
|
||||
"zero_optimization": {
|
||||
"stage": 2,
|
||||
"offload_param": {
|
||||
"device": "none"
|
||||
},
|
||||
"offload_optimizer": {
|
||||
"device": "none"
|
||||
},
|
||||
"allgather_partitions": true,
|
||||
"allgather_bucket_size": 5e8,
|
||||
"contiguous_gradients": true
|
||||
},
|
||||
"optimizer": {
|
||||
"type": "AdamW",
|
||||
"params": {
|
||||
"lr": "auto",
|
||||
"betas": [
|
||||
0.9,
|
||||
0.999
|
||||
],
|
||||
"eps": 1e-08
|
||||
}
|
||||
},
|
||||
"scheduler": {
|
||||
"type": "WarmupLR",
|
||||
"params": {
|
||||
"warmup_min_lr": 0,
|
||||
"warmup_max_lr": "auto",
|
||||
"warmup_num_steps": "auto",
|
||||
"warmup_type": "linear"
|
||||
}
|
||||
}
|
||||
}
|
1
train/configs/train/.gitignore
vendored
Normal file
1
train/configs/train/.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
||||
local_cfg.yaml
|
29
train/configs/train/finetune.yaml
Normal file
29
train/configs/train/finetune.yaml
Normal file
@ -0,0 +1,29 @@
|
||||
# model/tokenizer
|
||||
model_name: # add model here
|
||||
tokenizer_name: # add model here
|
||||
gradient_checkpointing: true
|
||||
save_name: # CHANGE
|
||||
|
||||
# dataset
|
||||
streaming: false
|
||||
num_proc: 64
|
||||
dataset_path: # update
|
||||
max_length: 1024
|
||||
batch_size: 32
|
||||
|
||||
# train dynamics
|
||||
lr: 5.0e-5
|
||||
eval_every: 800
|
||||
eval_steps: 100
|
||||
save_every: 800
|
||||
output_dir: # CHANGE
|
||||
checkpoint: null
|
||||
lora: false
|
||||
warmup_steps: 100
|
||||
num_epochs: 2
|
||||
|
||||
# logging
|
||||
wandb: true
|
||||
wandb_entity: # update
|
||||
wandb_project_name: # update
|
||||
seed: 42
|
31
train/configs/train/finetune_lora.yaml
Normal file
31
train/configs/train/finetune_lora.yaml
Normal file
@ -0,0 +1,31 @@
|
||||
# model/tokenizer
|
||||
model_name: # update
|
||||
tokenizer_name: # update
|
||||
gradient_checkpointing: false
|
||||
save_name: # CHANGE
|
||||
|
||||
# dataset
|
||||
streaming: false
|
||||
num_proc: 64
|
||||
dataset_path: # CHANGE
|
||||
max_length: 1024
|
||||
batch_size: 4
|
||||
|
||||
# train dynamics
|
||||
lr: 5.0e-5
|
||||
min_lr: 0
|
||||
weight_decay: 0.0
|
||||
eval_every: 2000
|
||||
eval_steps: 100
|
||||
save_every: 2000
|
||||
output_dir: # CHANGE
|
||||
checkpoint: null
|
||||
lora: true
|
||||
warmup_steps: 100
|
||||
num_epochs: 2
|
||||
|
||||
# logging
|
||||
wandb: true
|
||||
wandb_entity: # update
|
||||
wandb_project_name: # update
|
||||
seed: 42
|
31
train/configs/train/finetune_lora_ airoboros-7b-gpt4.yaml
Normal file
31
train/configs/train/finetune_lora_ airoboros-7b-gpt4.yaml
Normal file
@ -0,0 +1,31 @@
|
||||
# model/tokenizer
|
||||
model_name: jondurbin/airoboros-7b-gpt4 # update
|
||||
tokenizer_name: jondurbin/airoboros-7b-gpt4 # update
|
||||
gradient_checkpointing: false
|
||||
save_name: parisneo-7b_gpt42_lora # CHANGE
|
||||
|
||||
# dataset
|
||||
streaming: false
|
||||
num_proc: 64
|
||||
dataset_path: # CHANGE
|
||||
max_length: 1024
|
||||
batch_size: 4
|
||||
|
||||
# train dynamics
|
||||
lr: 5.0e-5
|
||||
min_lr: 0
|
||||
weight_decay: 0.0
|
||||
eval_every: 2000
|
||||
eval_steps: 100
|
||||
save_every: 2000
|
||||
output_dir: output # CHANGE
|
||||
checkpoint: null
|
||||
lora: true
|
||||
warmup_steps: 100
|
||||
num_epochs: 2
|
||||
|
||||
# logging
|
||||
wandb: false # update if you want to use weights and biases
|
||||
wandb_entity: # update
|
||||
wandb_project_name: # update
|
||||
seed: 42
|
15
train/requirements.txt
Normal file
15
train/requirements.txt
Normal file
@ -0,0 +1,15 @@
|
||||
accelerate
|
||||
datasets
|
||||
torchmetrics
|
||||
evaluate
|
||||
transformers>=4.28.0
|
||||
wandb
|
||||
pip
|
||||
peft
|
||||
nodelist-inflator
|
||||
deepspeed
|
||||
sentencepiece
|
||||
jsonlines
|
||||
nomic
|
||||
scikit-learn
|
||||
matplotlib
|
233
train/train.py
Normal file
233
train/train.py
Normal file
@ -0,0 +1,233 @@
|
||||
import os
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, get_scheduler, LlamaForCausalLM
|
||||
import torch
|
||||
from torch.optim import AdamW
|
||||
from argparse import ArgumentParser
|
||||
from read import read_config
|
||||
from accelerate import Accelerator
|
||||
from accelerate.utils import DummyScheduler, DummyOptim, set_seed
|
||||
from peft import get_peft_model, LoraConfig, TaskType
|
||||
from data import load_data
|
||||
from torchmetrics import MeanMetric
|
||||
from tqdm import tqdm
|
||||
import wandb
|
||||
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
def format_metrics(metrics, split, prefix=""):
|
||||
log = f"[{split}]" + prefix
|
||||
log += " ".join([f"{key}: {value:.4f}" for key, value in metrics.items()])
|
||||
|
||||
return log
|
||||
|
||||
|
||||
def evaluate(model, val_dataloader):
|
||||
model.eval()
|
||||
val_loss = MeanMetric(nan_strategy="error").to(model.device)
|
||||
|
||||
with torch.no_grad():
|
||||
for batch in tqdm(val_dataloader):
|
||||
loss = model(**batch).loss
|
||||
|
||||
loss_values = accelerator.gather_for_metrics({"loss": loss.detach()})
|
||||
|
||||
val_loss.update(loss_values["loss"])
|
||||
|
||||
return val_loss
|
||||
|
||||
|
||||
def train(accelerator, config):
|
||||
set_seed(config['seed'])
|
||||
|
||||
accelerator.print(config)
|
||||
accelerator.print(f"Using {accelerator.num_processes} GPUs")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(config['tokenizer_name'], model_max_length=config['max_length'])
|
||||
# if no pad token, set it to eos
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
|
||||
with accelerator.main_process_first():
|
||||
train_dataloader, val_dataloader = load_data(config, tokenizer)
|
||||
|
||||
|
||||
checkpoint = config["gradient_checkpointing"]
|
||||
model = AutoModelForCausalLM.from_pretrained(config["model_name"],
|
||||
use_cache=False if checkpoint else True,
|
||||
trust_remote_code=True)
|
||||
if checkpoint:
|
||||
model.gradient_checkpointing_enable()
|
||||
|
||||
if config["lora"]:
|
||||
peft_config = LoraConfig(
|
||||
# should R be configurable?
|
||||
task_type=TaskType.CAUSAL_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
|
||||
)
|
||||
model = get_peft_model(model, peft_config)
|
||||
model.print_trainable_parameters()
|
||||
|
||||
optimizer_cls = (
|
||||
AdamW
|
||||
if accelerator.state.deepspeed_plugin is None
|
||||
or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
||||
else DummyOptim
|
||||
)
|
||||
|
||||
# karpathy doesn't decay embeddding, maybe we should exclude
|
||||
# https://github.com/karpathy/minGPT/commit/bbbdac74fa9b2e55574d70056163ffbae42310c1#diff-2075fa9c224b395be5bda85544dd36572b59c76c54562819eadadbf268602834R157s
|
||||
optimizer = optimizer_cls(model.parameters(), lr=config["lr"], weight_decay=config["weight_decay"])
|
||||
|
||||
if accelerator.state.deepspeed_plugin is not None:
|
||||
gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[
|
||||
"gradient_accumulation_steps"
|
||||
]
|
||||
|
||||
# decay to min_lr instead of 0
|
||||
lr_ratio = config["min_lr"] / config["lr"]
|
||||
accelerator.print(f"Len of train_dataloader: {len(train_dataloader)}")
|
||||
total_num_steps = (len(train_dataloader) / gradient_accumulation_steps) * config["num_epochs"]
|
||||
# instead of decaying to zero, decay to ratio of min_lr / lr
|
||||
total_num_steps += int(total_num_steps * lr_ratio) + config["warmup_steps"]
|
||||
accelerator.print(f"Total training steps: {total_num_steps}")
|
||||
|
||||
# Creates Dummy Scheduler if `scheduler` was specified in the config file else creates `args.lr_scheduler_type` Scheduler
|
||||
if (
|
||||
accelerator.state.deepspeed_plugin is None
|
||||
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
||||
):
|
||||
scheduler = get_scheduler(
|
||||
name="cosine",
|
||||
optimizer=optimizer,
|
||||
num_warmup_steps=config["warmup_steps"] * accelerator.num_processes,
|
||||
num_training_steps=total_num_steps,
|
||||
)
|
||||
else:
|
||||
scheduler = DummyScheduler(
|
||||
optimizer, total_num_steps=config["warmup_steps"], warmup_num_steps=config["warmup_steps"]
|
||||
)
|
||||
|
||||
model, optimizer, train_dataloader, val_dataloader, scheduler = accelerator.prepare(
|
||||
model, optimizer, train_dataloader, val_dataloader, scheduler
|
||||
)
|
||||
|
||||
# setup for saving training states in case preemption
|
||||
accelerator.register_for_checkpointing(scheduler)
|
||||
|
||||
if config["checkpoint"]:
|
||||
accelerator.load_state(config["checkpoint"])
|
||||
accelerator.print(f"Resumed from checkpoint: {config['checkpoint']}")
|
||||
path = os.path.basename(config["train_args"]["resume_from_checkpoint"])
|
||||
training_difference = os.path.splitext(path)[0]
|
||||
resume_step = int(training_difference.replace("step_", ""))
|
||||
accelerator.skip_first_batches(train_dataloader, resume_step)
|
||||
accelerator.print(f"Resuming from step {resume_step}")
|
||||
|
||||
|
||||
# log gradients
|
||||
if accelerator.is_main_process and config["wandb"]:
|
||||
wandb.watch(model, log_freq=config["log_grads_every"], log="all")
|
||||
|
||||
for epoch in range(config["num_epochs"]):
|
||||
train_loss = MeanMetric(nan_strategy="error").to(model.device)
|
||||
for step, batch in enumerate(tqdm(train_dataloader)):
|
||||
model.train()
|
||||
outputs = model(**batch)
|
||||
loss = outputs.loss
|
||||
|
||||
# gather loss before backprop in case of gradient accumulation
|
||||
loss_values = accelerator.gather_for_metrics({"loss": loss.detach().float()})
|
||||
train_loss.update(loss_values["loss"])
|
||||
|
||||
loss = loss / gradient_accumulation_steps
|
||||
accelerator.backward(loss)
|
||||
# get gradient norm of all params
|
||||
|
||||
# log LR in case something weird happens
|
||||
if step > 0 and step % (config["eval_every"] // 10) == 0:
|
||||
if config["wandb"]:
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.log({"lr": scheduler.get_last_lr()[0]}, step=curr_step)
|
||||
|
||||
if (step + 1) % gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
optimizer.zero_grad()
|
||||
|
||||
|
||||
if step > 0 and step % config["save_every"] == 0:
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.save_state(f"{config['output_dir']}/step_{curr_step}")
|
||||
|
||||
if step > 0 and (step % config["eval_every"] == 0 or step == len(train_dataloader) - 1):
|
||||
val_loss = evaluate(model, val_dataloader)
|
||||
|
||||
log_train = {
|
||||
"train_loss": train_loss.compute()
|
||||
}
|
||||
log_val = {
|
||||
"val_loss": val_loss.compute()
|
||||
}
|
||||
|
||||
if config["wandb"]:
|
||||
curr_step = step + epoch * len(train_dataloader)
|
||||
accelerator.log({**log_train, **log_val}, step=curr_step)
|
||||
|
||||
accelerator.print(f"Current LR: {scheduler.get_last_lr()[0]}")
|
||||
accelerator.print(format_metrics(log_train, "train", f" step {step} "))
|
||||
accelerator.print(format_metrics(log_val, "val", f" step {step} "))
|
||||
|
||||
train_loss.reset()
|
||||
|
||||
accelerator.print(f"Epoch {epoch} finished")
|
||||
accelerator.print(f"Pushing to HF hub")
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
try:
|
||||
if accelerator.is_main_process:
|
||||
unwrapped_model.push_to_hub(config["save_name"] + f"-epoch_{epoch}", private=True)
|
||||
|
||||
except Exception as e:
|
||||
accelerator.print(e)
|
||||
accelerator.print(f"Failed to push to hub")
|
||||
|
||||
unwrapped_model.save_pretrained(
|
||||
f"{config['output_dir']}/epoch_{epoch}",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
|
||||
accelerator.wait_for_everyone()
|
||||
unwrapped_model = accelerator.unwrap_model(model)
|
||||
unwrapped_model.save_pretrained(
|
||||
f"{config['output_dir']}/final",
|
||||
is_main_process=accelerator.is_main_process,
|
||||
save_function=accelerator.save,
|
||||
state_dict=accelerator.get_state_dict(model),
|
||||
)
|
||||
|
||||
accelerator.end_training()
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parse arguments by reading in a config
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--config", type=str, default="config.yaml")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
config = read_config(args.config)
|
||||
|
||||
if config["wandb"]:
|
||||
accelerator = Accelerator(log_with="wandb")
|
||||
accelerator.init_trackers(
|
||||
project_name=config["wandb_project_name"],
|
||||
config=config,
|
||||
init_kwargs={"wandb": {"entity": config["wandb_entity"]}},
|
||||
)
|
||||
else:
|
||||
accelerator = Accelerator()
|
||||
|
||||
train(accelerator, config=config)
|
1
web/dist/assets/index-488cca87.css
vendored
1
web/dist/assets/index-488cca87.css
vendored
File diff suppressed because one or more lines are too long
1
web/dist/assets/index-54621153.css
vendored
Normal file
1
web/dist/assets/index-54621153.css
vendored
Normal file
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
4
web/dist/index.html
vendored
4
web/dist/index.html
vendored
@ -6,8 +6,8 @@
|
||||
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>GPT4All - WEBUI</title>
|
||||
<script type="module" crossorigin src="/assets/index-0344eb9b.js"></script>
|
||||
<link rel="stylesheet" href="/assets/index-488cca87.css">
|
||||
<script type="module" crossorigin src="/assets/index-f5f472ed.js"></script>
|
||||
<link rel="stylesheet" href="/assets/index-54621153.css">
|
||||
</head>
|
||||
<body>
|
||||
<div id="app"></div>
|
||||
|
@ -1,16 +1,159 @@
|
||||
<template>
|
||||
<div>
|
||||
Training
|
||||
<div class="container overflow-y-scroll flex flex-col no-scrollbar shadow-lg p-10 pt-0">
|
||||
<form @submit.prevent="submitForm" class="max-w-md mx-auto">
|
||||
<!-- Model/Tokenizer -->
|
||||
<div class="mb-4">
|
||||
<label for="model_name" class="text-sm">Model Name:</label>
|
||||
<input
|
||||
type="text"
|
||||
id="model_name"
|
||||
v-model="model_name"
|
||||
required
|
||||
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||
>
|
||||
</div>
|
||||
<div class="mb-4">
|
||||
<label for="tokenizer_name" class="text-sm">Tokenizer Name:</label>
|
||||
<input
|
||||
type="text"
|
||||
id="tokenizer_name"
|
||||
v-model="tokenizer_name"
|
||||
required
|
||||
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||
>
|
||||
</div>
|
||||
|
||||
<!-- Dataset -->
|
||||
<div class="mb-4">
|
||||
<label for="dataset_path" class="text-sm">Dataset:</label>
|
||||
<input
|
||||
type="file"
|
||||
id="dataset_path"
|
||||
ref="dataset_path"
|
||||
accept=".parquet"
|
||||
v-on:change="selectDatasetPath"
|
||||
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||
>
|
||||
<p class="mt-2 text-xs">Selected File: {{ selectedDatasetPath }}</p>
|
||||
</div>
|
||||
<div class="mb-4">
|
||||
<label for="max_length" class="text-sm">Max Length:</label>
|
||||
<input
|
||||
type="number"
|
||||
id="max_length"
|
||||
v-model.number="max_length"
|
||||
required
|
||||
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||
>
|
||||
</div>
|
||||
<div class="mb-4">
|
||||
<label for="batch_size" class="text-sm">Batch Size:</label>
|
||||
<input
|
||||
type="number"
|
||||
id="batch_size"
|
||||
v-model.number="batch_size"
|
||||
required
|
||||
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||
>
|
||||
</div>
|
||||
|
||||
<!-- Train Dynamics -->
|
||||
<div class="mb-4">
|
||||
<label for="lr" class="text-sm">Learning Rate:</label>
|
||||
<input
|
||||
type="number"
|
||||
id="lr"
|
||||
v-model.number="lr"
|
||||
required
|
||||
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||
>
|
||||
</div>
|
||||
<div class="mb-4">
|
||||
<label for="num_epochs" class="text-sm">Number of Epochs:</label>
|
||||
<input
|
||||
type="number"
|
||||
id="num_epochs"
|
||||
v-model.number="num_epochs"
|
||||
required
|
||||
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||
>
|
||||
</div>
|
||||
|
||||
<!-- Logging -->
|
||||
<div class="mb-4">
|
||||
<label for="output_dir" class="text-sm">Output Directory:</label>
|
||||
<input
|
||||
type="text"
|
||||
id="output_dir"
|
||||
v-model="selectedFolder"
|
||||
class="w-full mt-1 px-2 py-1 border border-gray-300 rounded"
|
||||
placeholder="Enter or select the output folder"
|
||||
>
|
||||
<input
|
||||
type="file"
|
||||
id="folder_selector"
|
||||
ref="folder_selector"
|
||||
style="display: none"
|
||||
webkitdirectory
|
||||
v-on:change="selectOutputDirectory"
|
||||
>
|
||||
<button type="button" @click="openFolderSelector" class="bg-blue-500 text-white px-4 py-2 rounded">Select Folder</button>
|
||||
</div>
|
||||
|
||||
<button type="submit" class="bg-blue-500 text-white px-4 py-2 rounded">Train LLM</button>
|
||||
</form>
|
||||
</div>
|
||||
</template>
|
||||
|
||||
<script>
|
||||
export default {
|
||||
setup () {
|
||||
|
||||
|
||||
return {}
|
||||
}
|
||||
}
|
||||
</script>
|
||||
|
||||
</template>
|
||||
|
||||
<script>
|
||||
export default {
|
||||
data() {
|
||||
return {
|
||||
model_name: 'jondurbin/airoboros-7b-gpt4',
|
||||
tokenizer_name: 'jondurbin/airoboros-7b-gpt4',
|
||||
dataset_path: '',
|
||||
max_length: 1024,
|
||||
batch_size: 4,
|
||||
lr: 5.0e-5,
|
||||
num_epochs: 2,
|
||||
selectedFolder: '',
|
||||
selectedDatasetPath: '',
|
||||
};
|
||||
},
|
||||
methods: {
|
||||
submitForm() {
|
||||
const formData = {
|
||||
model_name: this.model_name,
|
||||
tokenizer_name: this.tokenizer_name,
|
||||
dataset_path: this.selectedDatasetPath,
|
||||
max_length: this.max_length,
|
||||
batch_size: this.batch_size,
|
||||
lr: this.lr,
|
||||
num_epochs: this.num_epochs,
|
||||
output_dir: this.selectedFolder,
|
||||
};
|
||||
|
||||
// Send the form data to the backend
|
||||
// ...
|
||||
},
|
||||
openFolderSelector() {
|
||||
this.$refs.folder_selector.click();
|
||||
},
|
||||
selectOutputDirectory(event) {
|
||||
console.log("here")
|
||||
const folderPath = event.target.files[0]?.path;
|
||||
console.log(folderPath)
|
||||
if (folderPath) {
|
||||
this.selectedFolder = folderPath;
|
||||
}
|
||||
},
|
||||
selectDatasetPath(event) {
|
||||
const files = event.target.files;
|
||||
if (files.length > 0) {
|
||||
this.selectedDatasetPath = files[0].webkitRelativePath;
|
||||
}
|
||||
},
|
||||
},
|
||||
};
|
||||
</script>
|
||||
|
Loading…
Reference in New Issue
Block a user