lollms-webui/backends/c_transformers/__init__.py

144 lines
5.1 KiB
Python
Raw Normal View History

2023-04-20 17:30:03 +00:00
######
# Project : GPT4ALL-UI
# File : backend.py
# Author : ParisNeo with the help of the community
2023-05-17 15:38:40 +00:00
# Underlying backend : Abdeladim's pygptj backend
2023-04-20 17:30:03 +00:00
# Supported by Nomic-AI
# Licence : Apache 2.0
# Description :
# This is an interface class for GPT4All-ui backends.
2023-05-17 15:38:40 +00:00
# This backend is a wrapper to marella's backend
# Follow him on his github project : https://github.com/marella/ctransformers
2023-04-20 17:30:03 +00:00
######
from pathlib import Path
from typing import Callable
2023-05-14 00:29:09 +00:00
from gpt4all_api.backend import GPTBackend
2023-05-13 12:19:56 +00:00
import yaml
2023-05-17 15:38:40 +00:00
from ctransformers import AutoModelForCausalLM
2023-04-20 17:30:03 +00:00
__author__ = "parisneo"
__github__ = "https://github.com/nomic-ai/gpt4all-ui"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
2023-05-17 15:38:40 +00:00
backend_name = "GPTJ"
2023-04-20 17:30:03 +00:00
2023-05-17 15:38:40 +00:00
class GPTJ(GPTBackend):
2023-04-23 14:59:00 +00:00
file_extension='*.bin'
2023-04-20 17:30:03 +00:00
def __init__(self, config:dict) -> None:
"""Builds a LLAMACPP backend
Args:
config (dict): The configuration file
"""
2023-04-23 22:19:15 +00:00
super().__init__(config, False)
2023-05-17 15:38:40 +00:00
if 'gpt2' in self.config['model']:
model_type='gpt2'
elif 'gptj' in self.config['model']:
model_type='gptj'
elif 'gpt_neox' in self.config['model']:
model_type='gpt_neox'
elif 'dolly-v2' in self.config['model']:
model_type='dolly-v2'
elif 'starcoder' in self.config['model']:
model_type='starcoder'
elif 'llama' in self.config['model']:
model_type='llama'
elif 'mpt' in self.config['model']:
model_type='mpt'
2023-05-17 15:38:40 +00:00
else:
print("The model you are using is not supported by this backend")
return
2023-04-20 17:30:03 +00:00
2023-05-17 15:38:40 +00:00
if self.config["use_avx2"]:
self.model = AutoModelForCausalLM.from_pretrained(
f"./models/c_transformers/{self.config['model']}", model_type=model_type
)
else:
self.model = AutoModelForCausalLM.from_pretrained(
f"./models/c_transformers/{self.config['model']}", model_type=model_type, lib = "avx"
)
2023-05-18 19:31:18 +00:00
def tokenize(self, prompt):
"""
Tokenizes the given prompt using the model's tokenizer.
Args:
prompt (str): The input prompt to be tokenized.
Returns:
list: A list of tokens representing the tokenized prompt.
"""
return self.model.tokenize(prompt.encode())
2023-04-20 17:30:03 +00:00
2023-05-18 19:31:18 +00:00
def detokenize(self, tokens_list):
"""
Detokenizes the given list of tokens using the model's tokenizer.
Args:
tokens_list (list): A list of tokens to be detokenized.
Returns:
str: The detokenized text as a string.
"""
return self.model.detokenize(tokens_list)
2023-04-20 17:30:03 +00:00
def generate(self,
prompt:str,
n_predict: int = 128,
new_text_callback: Callable[[str], None] = bool,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
try:
output = ""
self.model.reset()
tokens = self.model.tokenize(prompt)
count = 0
2023-05-17 15:38:40 +00:00
for tok in self.model.generate(
tokens,
top_k=self.config['top_k'],
top_p=self.config['top_p'],
temperature=self.config['temperature'],
repetition_penalty=self.config['repeat_penalty'],
seed=self.config['seed'],
batch_size=1,
threads = self.config['n_threads'],
2023-05-17 15:38:40 +00:00
reset=True,
):
if count >= n_predict or self.model.is_eos_token(tok):
break
word = self.model.detokenize(tok)
if new_text_callback is not None:
if not new_text_callback(word):
break
output += word
count += 1
except Exception as ex:
2023-05-13 12:19:56 +00:00
print(ex)
return output
2023-05-17 15:38:40 +00:00
2023-05-13 12:19:56 +00:00
@staticmethod
def get_available_models():
# Create the file path relative to the child class's directory
backend_path = Path(__file__).parent
file_path = backend_path/"models.yaml"
with open(file_path, 'r') as file:
yaml_data = yaml.safe_load(file)
return yaml_data