lollms-webui/backends/hugging_face/__init__.py

84 lines
3.2 KiB
Python
Raw Normal View History

2023-05-14 08:12:51 +00:00
######
# Project : GPT4ALL-UI
# File : backend.py
# Author : ParisNeo with the help of the community
# Supported by Nomic-AI
# Licence : Apache 2.0
# Description :
# This is an interface class for GPT4All-ui backends.
######
from pathlib import Path
from typing import Callable
from accelerate import init_empty_weights
from accelerate import load_checkpoint_and_dispatch
from transformers import AutoTokenizer
from transformers import AutoConfig, AutoModelForCausalLM
2023-05-14 08:23:28 +00:00
from gpt4all_api.backend import GPTBackend
2023-05-14 08:12:51 +00:00
import torch
__author__ = "parisneo"
__github__ = "https://github.com/ParisNeo/GPTQ_backend"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
backend_name = "HuggingFace"
class HuggingFace(GPTBackend):
file_extension='*'
def __init__(self, config:dict) -> None:
"""Builds a HuggingFace backend
Args:
config (dict): The configuration file
"""
super().__init__(config, False)
# load quantized model, currently only support cpu or single gpu
config_path = AutoConfig.from_pretrained(config["model"])
self.tokenizer = AutoTokenizer.from_pretrained(config["model"])
self.model = AutoModelForCausalLM.from_pretrained(config["model"], load_in_8bit=True, device_map='auto')
def generate(self,
prompt:str,
n_predict: int = 128,
new_text_callback: Callable[[str], None] = bool,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
try:
tok = self.tokenizer.decode(self.model.generate(**self.tokenizer(prompt, return_tensors="pt").to("cuda:0"))[0])
new_text_callback(tok)
"""
self.model.reset()
for tok in self.model.generate(prompt,
n_predict=n_predict,
temp=self.config['temp'],
top_k=self.config['top_k'],
top_p=self.config['top_p'],
repeat_penalty=self.config['repeat_penalty'],
repeat_last_n = self.config['repeat_last_n'],
n_threads=self.config['n_threads'],
):
if not new_text_callback(tok):
return
"""
except Exception as ex:
print(ex)
@staticmethod
def list_models(config:dict):
"""Lists the models for this backend
"""
return [
"EleutherAI/gpt-j-6B"
]