lollms-webui/backends/gptq/__init__.py

100 lines
3.7 KiB
Python
Raw Normal View History

2023-05-14 08:12:51 +00:00
######
# Project : GPT4ALL-UI
# File : backend.py
# Author : ParisNeo with the help of the community
# Supported by Nomic-AI
# Licence : Apache 2.0
# Description :
# This is an interface class for GPT4All-ui backends.
######
from pathlib import Path
from typing import Callable
from transformers import AutoTokenizer, TextGenerationPipeline
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
from pyGpt4All.backend import GPTBackend
import torch
import yaml
__author__ = "parisneo"
__github__ = "https://github.com/ParisNeo/GPTQ_backend"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
backend_name = "GPTQ"
class GPTQ(GPTBackend):
file_extension='*'
def __init__(self, config:dict) -> None:
"""Builds a GPTQ backend
Args:
config (dict): The configuration file
"""
super().__init__(config, False)
self.model_dir = f'{config["model"]}'
# load quantized model, currently only support cpu or single gpu
self.model = AutoGPTQForCausalLM.from_pretrained(self.model_dir, BaseQuantizeConfig())
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir, use_fast=True )
def stop_generation(self):
self.model._grab_text_callback()
def generate(self,
prompt:str,
n_predict: int = 128,
new_text_callback: Callable[[str], None] = bool,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
try:
tok = self.tokenizer.decode(self.model.generate(**self.tokenizer(prompt, return_tensors="pt").to("cuda:0"))[0])
new_text_callback(tok)
"""
self.model.reset()
for tok in self.model.generate(prompt,
n_predict=n_predict,
temp=self.config['temp'],
top_k=self.config['top_k'],
top_p=self.config['top_p'],
repeat_penalty=self.config['repeat_penalty'],
repeat_last_n = self.config['repeat_last_n'],
n_threads=self.config['n_threads'],
):
if not new_text_callback(tok):
return
"""
except Exception as ex:
print(ex)
@staticmethod
def list_models(config:dict):
"""Lists the models for this backend
"""
return [
"EleutherAI/gpt-j-6b",
"opt-125m-4bit"
"TheBloke/medalpaca-13B-GPTQ-4bit",
"TheBloke/stable-vicuna-13B-GPTQ",
]
@staticmethod
def get_available_models():
# Create the file path relative to the child class's directory
backend_path = Path(__file__).parent
file_path = backend_path/"models.yaml"
with open(file_path, 'r') as file:
yaml_data = yaml.safe_load(file)
return yaml_data