lollms-webui/api/langchain.py

84 lines
2.5 KiB
Python
Raw Normal View History

2023-05-29 20:24:25 +02:00
try:
from langchain.llms.base import LLM
except ImportError:
raise ImportError(
'To use the ctransformers.langchain module, please install the '
'`langchain` python package: `pip install langchain`')
from typing import Any, Dict, Optional, Sequence
from pydantic import root_validator
from langchain.callbacks.manager import CallbackManagerForLLMRun
from api.binding import LLMBinding
class GenericBinding(LLM):
"""Wrapper around All compatible LLM interfaces.
Thanks to Marella for providing the base for this work.
To follow him, here is his github profile:
To use, you should have the `langchain` python package installed.
"""
client: Any #: :meta private:
model: str
"""The path to a model file or directory or the name of a Hugging Face Hub
model repo."""
model_type: Optional[str] = None
"""The model type."""
model_file: Optional[str] = None
"""The name of the model file in repo or directory."""
config: Optional[Dict[str, Any]] = None
"""The config parameters."""
lib: Optional[Any] = None
"""The path to a shared library or one of `avx2`, `avx`, `basic`."""
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {
'model': self.model,
'model_type': self.model_type,
'model_file': self.model_file,
'config': self.config,
}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return 'generic_binding'
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate and load model from a local file or remote repo."""
config = values['config'] or {}
values['client'] = LLMBinding(config, True)
return values
def _call(
self,
prompt: str,
stop: Optional[Sequence[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
) -> str:
"""Generate text from a prompt.
Args:
prompt: The prompt to generate text from.
stop: A list of sequences to stop generation when encountered.
Returns:
The generated text.
"""
text = []
for chunk in self.client(prompt, stop=stop, stream=True):
text.append(chunk)
if run_manager:
run_manager.on_llm_new_token(chunk, verbose=self.verbose)
return ''.join(text)