lollms-webui/api/binding.py

89 lines
2.7 KiB
Python
Raw Normal View History

2023-04-20 19:30:03 +02:00
######
2023-06-08 08:58:02 +02:00
# Project : lollms-webui
2023-05-25 23:24:14 +02:00
# File : binding.py
2023-04-20 19:30:03 +02:00
# Author : ParisNeo with the help of the community
# Supported by Nomic-AI
2023-05-21 22:46:02 +02:00
# license : Apache 2.0
2023-04-20 19:30:03 +02:00
# Description :
2023-06-08 08:58:02 +02:00
# This is an interface class for lollms-webui bindings.
2023-04-20 19:30:03 +02:00
######
from pathlib import Path
from typing import Callable
2023-05-13 14:19:56 +02:00
import inspect
import yaml
import sys
2023-04-20 19:30:03 +02:00
__author__ = "parisneo"
2023-06-08 08:58:02 +02:00
__github__ = "https://github.com/ParisNeo/lollms-webui"
2023-04-20 19:30:03 +02:00
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
2023-05-25 23:24:14 +02:00
class LLMBinding:
2023-05-26 14:01:21 +02:00
2023-04-23 16:59:00 +02:00
file_extension='*.bin'
2023-05-25 23:24:14 +02:00
binding_path = Path(__file__).parent
2023-04-24 00:19:15 +02:00
def __init__(self, config:dict, inline:bool) -> None:
2023-04-20 19:30:03 +02:00
self.config = config
2023-04-24 00:19:15 +02:00
self.inline = inline
2023-04-23 16:59:00 +02:00
2023-04-20 19:30:03 +02:00
def generate(self,
prompt:str,
n_predict: int = 128,
new_text_callback: Callable[[str], None] = None,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
This should ber implemented by child class
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
2023-05-02 16:49:13 +02:00
pass
2023-05-18 21:31:18 +02:00
def tokenize(self, prompt):
"""
Tokenizes the given prompt using the model's tokenizer.
Args:
prompt (str): The input prompt to be tokenized.
Returns:
list: A list of tokens representing the tokenized prompt.
"""
pass
def detokenize(self, tokens_list):
"""
Detokenizes the given list of tokens using the model's tokenizer.
Args:
tokens_list (list): A list of tokens to be detokenized.
Returns:
str: The detokenized text as a string.
"""
pass
2023-05-02 16:49:13 +02:00
@staticmethod
def list_models(config:dict):
2023-05-25 23:24:14 +02:00
"""Lists the models for this binding
2023-05-02 16:49:13 +02:00
"""
2023-06-05 01:21:12 +02:00
models_dir = Path('./models')/config["binding_name"] # replace with the actual path to the models folder
2023-05-25 23:24:14 +02:00
return [f.name for f in models_dir.glob(LLMBinding.file_extension)]
2023-05-25 12:51:31 +02:00
2023-05-13 14:19:56 +02:00
@staticmethod
def get_available_models():
# Create the file path relative to the child class's directory
2023-05-25 23:24:14 +02:00
binding_path = Path(__file__).parent
file_path = binding_path/"models.yaml"
2023-05-13 14:19:56 +02:00
with open(file_path, 'r') as file:
yaml_data = yaml.safe_load(file)
2023-05-18 21:31:18 +02:00
return yaml_data