2023-05-11 15:09:34 +02:00
|
|
|
######
|
|
|
|
# Project : GPT4ALL-UI
|
2023-05-25 23:24:14 +02:00
|
|
|
# File : binding.py
|
2023-05-11 15:09:34 +02:00
|
|
|
# Author : ParisNeo with the help of the community
|
|
|
|
# Supported by Nomic-AI
|
2023-05-21 22:46:02 +02:00
|
|
|
# license : Apache 2.0
|
2023-05-11 15:09:34 +02:00
|
|
|
# Description :
|
2023-05-25 23:24:14 +02:00
|
|
|
# This is an interface class for GPT4All-ui bindings.
|
2023-05-17 17:38:40 +02:00
|
|
|
|
|
|
|
|
2023-05-25 23:24:14 +02:00
|
|
|
# This binding is a wrapper to gpt4all's official binding
|
2023-05-26 12:11:14 +02:00
|
|
|
# Follow him on his github project : https://github.com/ParisNeo/gpt4all
|
2023-05-17 17:38:40 +02:00
|
|
|
|
2023-05-11 15:09:34 +02:00
|
|
|
######
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Callable
|
2023-05-14 02:29:09 +02:00
|
|
|
from gpt4all import GPT4All
|
2023-05-25 23:24:14 +02:00
|
|
|
from api.binding import LLMBinding
|
2023-05-13 14:19:56 +02:00
|
|
|
import yaml
|
2023-05-11 15:09:34 +02:00
|
|
|
|
|
|
|
__author__ = "parisneo"
|
2023-05-26 12:11:14 +02:00
|
|
|
__github__ = "https://github.com/ParisNeo/gpt4all-ui"
|
2023-05-11 15:09:34 +02:00
|
|
|
__copyright__ = "Copyright 2023, "
|
|
|
|
__license__ = "Apache 2.0"
|
|
|
|
|
2023-05-25 23:24:14 +02:00
|
|
|
binding_name = "GPT4ALL"
|
2023-05-29 17:08:06 +02:00
|
|
|
from gpt4all import GPT4All
|
2023-05-11 15:09:34 +02:00
|
|
|
|
2023-05-25 23:24:14 +02:00
|
|
|
class GPT4ALL(LLMBinding):
|
2023-05-11 15:09:34 +02:00
|
|
|
file_extension='*.bin'
|
2023-05-13 14:19:56 +02:00
|
|
|
|
2023-05-11 15:09:34 +02:00
|
|
|
def __init__(self, config:dict) -> None:
|
2023-05-25 23:24:14 +02:00
|
|
|
"""Builds a GPT4ALL binding
|
2023-05-11 15:09:34 +02:00
|
|
|
|
|
|
|
Args:
|
|
|
|
config (dict): The configuration file
|
|
|
|
"""
|
|
|
|
super().__init__(config, False)
|
2023-05-14 02:29:09 +02:00
|
|
|
self.model = GPT4All.get_model_from_name(self.config['model'])
|
|
|
|
self.model.load_model(
|
2023-05-19 22:21:13 +02:00
|
|
|
model_path=f"./models/gpt_4all/{self.config['model']}"
|
2023-05-14 02:29:09 +02:00
|
|
|
)
|
2023-05-11 15:09:34 +02:00
|
|
|
|
2023-05-18 21:31:18 +02:00
|
|
|
|
|
|
|
def tokenize(self, prompt):
|
|
|
|
"""
|
|
|
|
Tokenizes the given prompt using the model's tokenizer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt (str): The input prompt to be tokenized.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: A list of tokens representing the tokenized prompt.
|
|
|
|
"""
|
|
|
|
return None
|
|
|
|
|
|
|
|
def detokenize(self, tokens_list):
|
|
|
|
"""
|
|
|
|
Detokenizes the given list of tokens using the model's tokenizer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens_list (list): A list of tokens to be detokenized.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: The detokenized text as a string.
|
|
|
|
"""
|
|
|
|
return None
|
2023-05-29 17:08:06 +02:00
|
|
|
|
|
|
|
|
2023-05-11 15:09:34 +02:00
|
|
|
def generate(self,
|
|
|
|
prompt:str,
|
|
|
|
n_predict: int = 128,
|
|
|
|
new_text_callback: Callable[[str], None] = bool,
|
|
|
|
verbose: bool = False,
|
|
|
|
**gpt_params ):
|
|
|
|
"""Generates text out of a prompt
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt (str): The prompt to use for generation
|
|
|
|
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
|
|
|
|
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
|
|
|
|
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
|
|
|
|
"""
|
|
|
|
try:
|
2023-05-29 21:26:20 +02:00
|
|
|
response_text = []
|
2023-05-29 17:08:06 +02:00
|
|
|
def local_callback(token_id, response):
|
2023-05-29 21:26:20 +02:00
|
|
|
decoded_word = response.decode('utf-8')
|
|
|
|
response_text.append( decoded_word )
|
2023-05-29 17:08:06 +02:00
|
|
|
if new_text_callback is not None:
|
2023-05-29 21:26:20 +02:00
|
|
|
if not new_text_callback(decoded_word):
|
2023-05-29 17:08:06 +02:00
|
|
|
return False
|
|
|
|
|
|
|
|
# Do whatever you want with decoded_token here.
|
|
|
|
|
|
|
|
return True
|
|
|
|
self.model._response_callback = local_callback
|
|
|
|
self.model.generate(prompt,
|
2023-05-11 15:09:34 +02:00
|
|
|
n_predict=n_predict,
|
2023-05-30 00:37:09 +02:00
|
|
|
temp=gpt_params["temp"],
|
|
|
|
top_k=gpt_params['top_k'],
|
|
|
|
top_p=gpt_params['top_p'],
|
|
|
|
repeat_penalty=gpt_params['repeat_penalty'],
|
2023-05-11 15:09:34 +02:00
|
|
|
repeat_last_n = self.config['repeat_last_n'],
|
2023-05-14 02:29:09 +02:00
|
|
|
# n_threads=self.config['n_threads'],
|
2023-05-29 17:08:06 +02:00
|
|
|
streaming=False,
|
|
|
|
)
|
2023-05-11 15:09:34 +02:00
|
|
|
except Exception as ex:
|
2023-05-13 14:19:56 +02:00
|
|
|
print(ex)
|
2023-05-29 21:26:20 +02:00
|
|
|
return ''.join(response_text)
|
2023-05-13 14:19:56 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def get_available_models():
|
|
|
|
# Create the file path relative to the child class's directory
|
2023-05-25 23:24:14 +02:00
|
|
|
binding_path = Path(__file__).parent
|
|
|
|
file_path = binding_path/"models.yaml"
|
2023-05-13 14:19:56 +02:00
|
|
|
|
|
|
|
with open(file_path, 'r') as file:
|
|
|
|
yaml_data = yaml.safe_load(file)
|
|
|
|
|
|
|
|
return yaml_data
|