120 lines
4.1 KiB
Python
Raw Normal View History

2023-05-11 15:09:34 +02:00
######
# Project : GPT4ALL-UI
2023-05-25 23:24:14 +02:00
# File : binding.py
2023-05-11 15:09:34 +02:00
# Author : ParisNeo with the help of the community
# Supported by Nomic-AI
2023-05-21 22:46:02 +02:00
# license : Apache 2.0
2023-05-11 15:09:34 +02:00
# Description :
2023-05-25 23:24:14 +02:00
# This is an interface class for GPT4All-ui bindings.
2023-05-17 17:38:40 +02:00
2023-05-25 23:24:14 +02:00
# This binding is a wrapper to gpt4all's official binding
2023-05-26 12:11:14 +02:00
# Follow him on his github project : https://github.com/ParisNeo/gpt4all
2023-05-17 17:38:40 +02:00
2023-05-11 15:09:34 +02:00
######
from pathlib import Path
from typing import Callable
2023-05-14 02:29:09 +02:00
from gpt4all import GPT4All
2023-05-25 23:24:14 +02:00
from api.binding import LLMBinding
2023-05-13 14:19:56 +02:00
import yaml
2023-05-11 15:09:34 +02:00
__author__ = "parisneo"
2023-05-26 12:11:14 +02:00
__github__ = "https://github.com/ParisNeo/gpt4all-ui"
2023-05-11 15:09:34 +02:00
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
2023-05-25 23:24:14 +02:00
binding_name = "GPT4ALL"
2023-05-29 17:08:06 +02:00
from gpt4all import GPT4All
2023-05-11 15:09:34 +02:00
2023-05-25 23:24:14 +02:00
class GPT4ALL(LLMBinding):
2023-05-11 15:09:34 +02:00
file_extension='*.bin'
2023-05-13 14:19:56 +02:00
2023-05-11 15:09:34 +02:00
def __init__(self, config:dict) -> None:
2023-05-25 23:24:14 +02:00
"""Builds a GPT4ALL binding
2023-05-11 15:09:34 +02:00
Args:
config (dict): The configuration file
"""
super().__init__(config, False)
2023-05-14 02:29:09 +02:00
self.model = GPT4All.get_model_from_name(self.config['model'])
self.model.load_model(
2023-05-19 22:21:13 +02:00
model_path=f"./models/gpt_4all/{self.config['model']}"
2023-05-14 02:29:09 +02:00
)
2023-05-11 15:09:34 +02:00
2023-05-18 21:31:18 +02:00
def tokenize(self, prompt):
"""
Tokenizes the given prompt using the model's tokenizer.
Args:
prompt (str): The input prompt to be tokenized.
Returns:
list: A list of tokens representing the tokenized prompt.
"""
return None
def detokenize(self, tokens_list):
"""
Detokenizes the given list of tokens using the model's tokenizer.
Args:
tokens_list (list): A list of tokens to be detokenized.
Returns:
str: The detokenized text as a string.
"""
return None
2023-05-29 17:08:06 +02:00
2023-05-11 15:09:34 +02:00
def generate(self,
prompt:str,
n_predict: int = 128,
new_text_callback: Callable[[str], None] = bool,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
try:
2023-05-29 21:26:20 +02:00
response_text = []
2023-05-29 17:08:06 +02:00
def local_callback(token_id, response):
2023-05-29 21:26:20 +02:00
decoded_word = response.decode('utf-8')
response_text.append( decoded_word )
2023-05-29 17:08:06 +02:00
if new_text_callback is not None:
2023-05-29 21:26:20 +02:00
if not new_text_callback(decoded_word):
2023-05-29 17:08:06 +02:00
return False
# Do whatever you want with decoded_token here.
return True
self.model._response_callback = local_callback
self.model.generate(prompt,
2023-05-11 15:09:34 +02:00
n_predict=n_predict,
2023-05-30 00:37:09 +02:00
temp=gpt_params["temp"],
top_k=gpt_params['top_k'],
top_p=gpt_params['top_p'],
repeat_penalty=gpt_params['repeat_penalty'],
2023-05-11 15:09:34 +02:00
repeat_last_n = self.config['repeat_last_n'],
2023-05-14 02:29:09 +02:00
# n_threads=self.config['n_threads'],
2023-05-29 17:08:06 +02:00
streaming=False,
)
2023-05-11 15:09:34 +02:00
except Exception as ex:
2023-05-13 14:19:56 +02:00
print(ex)
2023-05-29 21:26:20 +02:00
return ''.join(response_text)
2023-05-13 14:19:56 +02:00
@staticmethod
def get_available_models():
# Create the file path relative to the child class's directory
2023-05-25 23:24:14 +02:00
binding_path = Path(__file__).parent
file_path = binding_path/"models.yaml"
2023-05-13 14:19:56 +02:00
with open(file_path, 'r') as file:
yaml_data = yaml.safe_load(file)
return yaml_data