lollms-webui/pyGpt4All/backends/transformers.py

69 lines
2.6 KiB
Python
Raw Normal View History

2023-04-22 21:38:34 +00:00
######
# Project : GPT4ALL-UI
# File : backend.py
# Author : ParisNeo with the help of the community
# Supported by Nomic-AI
# Licence : Apache 2.0
# Description :
# This is an interface class for GPT4All-ui backends.
######
from pathlib import Path
from typing import Callable
from transformers import AutoTokenizer
from transformers import AutoModelForCausalLM
from pyGpt4All.backends.backend import GPTBackend
__author__ = "parisneo"
__github__ = "https://github.com/nomic-ai/gpt4all-ui"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
2023-04-23 18:28:24 +00:00
backend_name = "Transformers"
2023-04-22 21:38:34 +00:00
class Transformers(GPTBackend):
2023-04-23 14:59:00 +00:00
file_extension='*'
2023-04-22 21:38:34 +00:00
def __init__(self, config:dict) -> None:
"""Builds a GPT-J backend
Args:
config (dict): The configuration file
"""
super().__init__(config)
self.config = config
2023-04-23 14:59:00 +00:00
self.tokenizer = tokenizer = AutoTokenizer.from_pretrained(f"./models/transformers/{self.config['model']}/tokenizer.json", local_files_only=True)
2023-04-22 21:38:34 +00:00
self.model = AutoModelForCausalLM.from_pretrained(f"./models/transformers/{self.config['model']}/model.bin", local_files_only=True)
def generate(self,
prompt:str,
n_predict: int = 128,
new_text_callback: Callable[[str], None] = bool,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
inputs = self.tokenizer(prompt, return_tensors="pt").input_ids
while len(inputs<n_predict):
outputs = self.model.generate(
inputs,
max_new_tokens=1,
#new_text_callback=new_text_callback,
temp=self.config['temp'],
top_k=self.config['top_k'],
top_p=self.config['top_p'],
repeat_penalty=self.config['repeat_penalty'],
repeat_last_n = self.config['repeat_last_n'],
n_threads=self.config['n_threads'],
verbose=verbose
)
inputs += outputs
new_text_callback(self.tokenizer.batch_decode(outputs, skip_special_tokens=True))