2023-04-22 21:38:34 +00:00
|
|
|
######
|
|
|
|
# Project : GPT4ALL-UI
|
|
|
|
# File : backend.py
|
|
|
|
# Author : ParisNeo with the help of the community
|
|
|
|
# Supported by Nomic-AI
|
|
|
|
# Licence : Apache 2.0
|
|
|
|
# Description :
|
|
|
|
# This is an interface class for GPT4All-ui backends.
|
|
|
|
######
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Callable
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
from pyGpt4All.backends.backend import GPTBackend
|
|
|
|
|
|
|
|
__author__ = "parisneo"
|
|
|
|
__github__ = "https://github.com/nomic-ai/gpt4all-ui"
|
|
|
|
__copyright__ = "Copyright 2023, "
|
|
|
|
__license__ = "Apache 2.0"
|
|
|
|
|
2023-04-23 18:28:24 +00:00
|
|
|
backend_name = "Transformers"
|
|
|
|
|
2023-04-22 21:38:34 +00:00
|
|
|
|
|
|
|
class Transformers(GPTBackend):
|
2023-04-23 14:59:00 +00:00
|
|
|
file_extension='*'
|
2023-04-22 21:38:34 +00:00
|
|
|
def __init__(self, config:dict) -> None:
|
|
|
|
"""Builds a GPT-J backend
|
|
|
|
|
|
|
|
Args:
|
|
|
|
config (dict): The configuration file
|
|
|
|
"""
|
|
|
|
super().__init__(config)
|
|
|
|
self.config = config
|
2023-04-23 14:59:00 +00:00
|
|
|
self.tokenizer = tokenizer = AutoTokenizer.from_pretrained(f"./models/transformers/{self.config['model']}/tokenizer.json", local_files_only=True)
|
2023-04-22 21:38:34 +00:00
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(f"./models/transformers/{self.config['model']}/model.bin", local_files_only=True)
|
|
|
|
|
|
|
|
|
|
|
|
def generate(self,
|
|
|
|
prompt:str,
|
|
|
|
n_predict: int = 128,
|
|
|
|
new_text_callback: Callable[[str], None] = bool,
|
|
|
|
verbose: bool = False,
|
|
|
|
**gpt_params ):
|
|
|
|
"""Generates text out of a prompt
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt (str): The prompt to use for generation
|
|
|
|
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
|
|
|
|
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
|
|
|
|
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
|
|
|
|
"""
|
|
|
|
|
|
|
|
inputs = self.tokenizer(prompt, return_tensors="pt").input_ids
|
|
|
|
while len(inputs<n_predict):
|
|
|
|
outputs = self.model.generate(
|
|
|
|
inputs,
|
|
|
|
max_new_tokens=1,
|
|
|
|
#new_text_callback=new_text_callback,
|
|
|
|
temp=self.config['temp'],
|
|
|
|
top_k=self.config['top_k'],
|
|
|
|
top_p=self.config['top_p'],
|
|
|
|
repeat_penalty=self.config['repeat_penalty'],
|
|
|
|
repeat_last_n = self.config['repeat_last_n'],
|
|
|
|
n_threads=self.config['n_threads'],
|
|
|
|
verbose=verbose
|
|
|
|
)
|
|
|
|
inputs += outputs
|
|
|
|
new_text_callback(self.tokenizer.batch_decode(outputs, skip_special_tokens=True))
|