lollms-webui/notebooks/ggml_quantize.ipynb

131 lines
3.5 KiB
Plaintext
Raw Normal View History

2024-02-27 13:03:35 +01:00
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The first step consists of compiling llama.cpp and installing the required libraries in our Python environment."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Install llama.cpp\n",
"!git clone https://github.com/ggerganov/llama.cpp\n",
"!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make\n",
"!pip install -r llama.cpp/requirements.txt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we can download our model. We will use an jondurbin/airoboros-m-7b-3.1.2 model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL_ID = \"jondurbin/airoboros-m-7b-3.1.2\"\n",
"\n",
"# Download model\n",
"!git lfs install\n",
"!git clone https://huggingface.co/{MODEL_ID}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This step can take a while. Once its done, we need to convert our weight to GGML FP16 format"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL_NAME = MODEL_ID.split('/')[-1]\n",
"\n",
"# Convert to fp16\n",
"fp16 = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin\"\n",
"!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can quantize the model using one or several methods. In this case, we will use the Q4_K_M and Q5_K_M methods. This is the only step that actually requires a GPU."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"QUANTIZATION_METHODS = [\"q4_k_m\", \"q5_k_m\"]\n",
"\n",
"for method in QUANTIZATION_METHODS:\n",
" qtype = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.{method.upper()}.gguf\"\n",
" !./llama.cpp/quantize {fp16} {qtype} {method}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can push our quantized model to a new repo on the Hugging Face Hub with the “-GGUF” suffix. First, lets log in and modify the following code block to match your username. You can enter your Hugging Face token (https://huggingface.co/settings/tokens) in Google Colabs “Secrets” tab. We use the allow_patterns parameter to only upload GGUF models and not the entirety of the directory."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"!pip install -q huggingface_hub\n",
"from huggingface_hub import create_repo, HfApi\n",
"from google.colab import userdata\n",
"\n",
"# Defined in the secrets tab in Google Colab\n",
"hf_token = userdata.get('huggingface')\n",
"\n",
"api = HfApi()\n",
"username = \"parisneo\"\n",
"\n",
"# Create empty repo\n",
"create_repo(\n",
" repo_id = f\"{username}/{MODEL_NAME}-GGUF\",\n",
" repo_type=\"model\",\n",
" exist_ok=True,\n",
" token=hf_token\n",
")\n",
"\n",
"# Upload gguf files\n",
"api.upload_folder(\n",
" folder_path=MODEL_NAME,\n",
" repo_id=f\"{username}/{MODEL_NAME}-GGUF\",\n",
" allow_patterns=f\"*.gguf\",\n",
" token=hf_token\n",
")"
]
}
],
"metadata": {
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 2
}