k3ng_rotator_controller/LSM303.h
Anthony Good fc091542b0 2.0.2014072701
FEATURE_AZ_POSITION_POLOLU_LSM303 (rotator_features.h)  (code contributed by AD0CZ)
    FEATURE_EL_POSITION_POLOLU_LSM303 (rotator_features.h)
    #define POLOLU_LSM_303_MIN_ARRAY {+59, +19, -731} (rotator_settings.h)
    #define POLOLU_LSM_303_MAX_ARRAY {+909, +491, +14} (rotator_settings.h)
    DEBUG_POLOLU_LSM303_CALIBRATION (rotator_features.h)
2014-07-27 18:40:55 -04:00

219 lines
6.6 KiB
C++

#ifndef LSM303_h
#define LSM303_h
#include <Arduino.h> // for byte data type
class LSM303
{
public:
template <typename T> struct vector
{
T x, y, z;
};
enum deviceType { device_DLH, device_DLM, device_DLHC, device_D, device_auto };
enum sa0State { sa0_low, sa0_high, sa0_auto };
// register addresses
enum regAddr
{
TEMP_OUT_L = 0x05, // D
TEMP_OUT_H = 0x06, // D
STATUS_M = 0x07, // D
INT_CTRL_M = 0x12, // D
INT_SRC_M = 0x13, // D
INT_THS_L_M = 0x14, // D
INT_THS_H_M = 0x15, // D
OFFSET_X_L_M = 0x16, // D
OFFSET_X_H_M = 0x17, // D
OFFSET_Y_L_M = 0x18, // D
OFFSET_Y_H_M = 0x19, // D
OFFSET_Z_L_M = 0x1A, // D
OFFSET_Z_H_M = 0x1B, // D
REFERENCE_X = 0x1C, // D
REFERENCE_Y = 0x1D, // D
REFERENCE_Z = 0x1E, // D
CTRL0 = 0x1F, // D
CTRL1 = 0x20, // D
CTRL_REG1_A = 0x20, // DLH, DLM, DLHC
CTRL2 = 0x21, // D
CTRL_REG2_A = 0x21, // DLH, DLM, DLHC
CTRL3 = 0x22, // D
CTRL_REG3_A = 0x22, // DLH, DLM, DLHC
CTRL4 = 0x23, // D
CTRL_REG4_A = 0x23, // DLH, DLM, DLHC
CTRL5 = 0x24, // D
CTRL_REG5_A = 0x24, // DLH, DLM, DLHC
CTRL6 = 0x25, // D
CTRL_REG6_A = 0x25, // DLHC
HP_FILTER_RESET_A = 0x25, // DLH, DLM
CTRL7 = 0x26, // D
REFERENCE_A = 0x26, // DLH, DLM, DLHC
STATUS_A = 0x27, // D
STATUS_REG_A = 0x27, // DLH, DLM, DLHC
OUT_X_L_A = 0x28,
OUT_X_H_A = 0x29,
OUT_Y_L_A = 0x2A,
OUT_Y_H_A = 0x2B,
OUT_Z_L_A = 0x2C,
OUT_Z_H_A = 0x2D,
FIFO_CTRL = 0x2E, // D
FIFO_CTRL_REG_A = 0x2E, // DLHC
FIFO_SRC = 0x2F, // D
FIFO_SRC_REG_A = 0x2F, // DLHC
IG_CFG1 = 0x30, // D
INT1_CFG_A = 0x30, // DLH, DLM, DLHC
IG_SRC1 = 0x31, // D
INT1_SRC_A = 0x31, // DLH, DLM, DLHC
IG_THS1 = 0x32, // D
INT1_THS_A = 0x32, // DLH, DLM, DLHC
IG_DUR1 = 0x33, // D
INT1_DURATION_A = 0x33, // DLH, DLM, DLHC
IG_CFG2 = 0x34, // D
INT2_CFG_A = 0x34, // DLH, DLM, DLHC
IG_SRC2 = 0x35, // D
INT2_SRC_A = 0x35, // DLH, DLM, DLHC
IG_THS2 = 0x36, // D
INT2_THS_A = 0x36, // DLH, DLM, DLHC
IG_DUR2 = 0x37, // D
INT2_DURATION_A = 0x37, // DLH, DLM, DLHC
CLICK_CFG = 0x38, // D
CLICK_CFG_A = 0x38, // DLHC
CLICK_SRC = 0x39, // D
CLICK_SRC_A = 0x39, // DLHC
CLICK_THS = 0x3A, // D
CLICK_THS_A = 0x3A, // DLHC
TIME_LIMIT = 0x3B, // D
TIME_LIMIT_A = 0x3B, // DLHC
TIME_LATENCY = 0x3C, // D
TIME_LATENCY_A = 0x3C, // DLHC
TIME_WINDOW = 0x3D, // D
TIME_WINDOW_A = 0x3D, // DLHC
Act_THS = 0x3E, // D
Act_DUR = 0x3F, // D
CRA_REG_M = 0x00, // DLH, DLM, DLHC
CRB_REG_M = 0x01, // DLH, DLM, DLHC
MR_REG_M = 0x02, // DLH, DLM, DLHC
SR_REG_M = 0x09, // DLH, DLM, DLHC
IRA_REG_M = 0x0A, // DLH, DLM, DLHC
IRB_REG_M = 0x0B, // DLH, DLM, DLHC
IRC_REG_M = 0x0C, // DLH, DLM, DLHC
WHO_AM_I_M = 0x0F, // DLM
WHO_AM_I = 0x0F, // D
TEMP_OUT_H_M = 0x31, // DLHC
TEMP_OUT_L_M = 0x32, // DLHC
// dummy addresses for registers in different locations on different devices;
// the library translates these based on device type
// value with sign flipped is used as index into translated_regs array
OUT_X_H_M = -1,
OUT_X_L_M = -2,
OUT_Y_H_M = -3,
OUT_Y_L_M = -4,
OUT_Z_H_M = -5,
OUT_Z_L_M = -6,
// update dummy_reg_count if registers are added here!
// device-specific register addresses
DLH_OUT_X_H_M = 0x03,
DLH_OUT_X_L_M = 0x04,
DLH_OUT_Y_H_M = 0x05,
DLH_OUT_Y_L_M = 0x06,
DLH_OUT_Z_H_M = 0x07,
DLH_OUT_Z_L_M = 0x08,
DLM_OUT_X_H_M = 0x03,
DLM_OUT_X_L_M = 0x04,
DLM_OUT_Z_H_M = 0x05,
DLM_OUT_Z_L_M = 0x06,
DLM_OUT_Y_H_M = 0x07,
DLM_OUT_Y_L_M = 0x08,
DLHC_OUT_X_H_M = 0x03,
DLHC_OUT_X_L_M = 0x04,
DLHC_OUT_Z_H_M = 0x05,
DLHC_OUT_Z_L_M = 0x06,
DLHC_OUT_Y_H_M = 0x07,
DLHC_OUT_Y_L_M = 0x08,
D_OUT_X_L_M = 0x08,
D_OUT_X_H_M = 0x09,
D_OUT_Y_L_M = 0x0A,
D_OUT_Y_H_M = 0x0B,
D_OUT_Z_L_M = 0x0C,
D_OUT_Z_H_M = 0x0D
};
vector<int16_t> a; // accelerometer readings
vector<int16_t> m; // magnetometer readings
vector<int16_t> m_max; // maximum magnetometer values, used for calibration
vector<int16_t> m_min; // minimum magnetometer values, used for calibration
byte last_status; // status of last I2C transmission
LSM303(void);
bool init(deviceType device = device_auto, sa0State sa0 = sa0_auto);
byte getDeviceType(void) { return _device; }
void enableDefault(void);
void writeAccReg(regAddr reg, byte value);
byte readAccReg(regAddr reg);
void writeMagReg(regAddr reg, byte value);
byte readMagReg(regAddr reg);
void writeReg(regAddr reg, byte value);
byte readReg(regAddr reg);
void readAcc(void);
void readMag(void);
void read(void);
void setTimeout(unsigned int timeout);
unsigned int getTimeout(void);
bool timeoutOccurred(void);
float heading(void);
template <typename T> float heading(vector<T> from);
// vector functions
template <typename Ta, typename Tb, typename To> static void vector_cross(const vector<Ta> *a, const vector<Tb> *b, vector<To> *out);
template <typename Ta, typename Tb> static float vector_dot(const vector<Ta> *a,const vector<Tb> *b);
static void vector_normalize(vector<float> *a);
private:
deviceType _device; // chip type (DLH, DLM, or DLHC)
byte acc_address;
byte mag_address;
static const int dummy_reg_count = 6;
regAddr translated_regs[dummy_reg_count + 1]; // index 0 not used
unsigned int io_timeout;
bool did_timeout;
int testReg(byte address, regAddr reg);
};
#endif