k3ng_rotator_controller/TinyGPS.cpp
2014-07-02 17:49:28 -04:00

430 lines
12 KiB
C++
Executable File

/*
TinyGPS - a small GPS library for Arduino providing basic NMEA parsing
Based on work by and "distance_to" and "course_to" courtesy of Maarten Lamers.
Suggestion to add satellites(), course_to(), and cardinal(), by Matt Monson.
Precision improvements suggested by Wayne Holder.
Copyright (C) 2008-2013 Mikal Hart
All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "TinyGPS.h"
#define _GPRMC_TERM "GPRMC"
#define _GPGGA_TERM "GPGGA"
TinyGPS::TinyGPS()
: _time(GPS_INVALID_TIME)
, _date(GPS_INVALID_DATE)
, _latitude(GPS_INVALID_ANGLE)
, _longitude(GPS_INVALID_ANGLE)
, _altitude(GPS_INVALID_ALTITUDE)
, _speed(GPS_INVALID_SPEED)
, _course(GPS_INVALID_ANGLE)
, _hdop(GPS_INVALID_HDOP)
, _numsats(GPS_INVALID_SATELLITES)
, _last_time_fix(GPS_INVALID_FIX_TIME)
, _last_position_fix(GPS_INVALID_FIX_TIME)
, _parity(0)
, _is_checksum_term(false)
, _sentence_type(_GPS_SENTENCE_OTHER)
, _term_number(0)
, _term_offset(0)
, _gps_data_good(false)
#ifndef _GPS_NO_STATS
, _encoded_characters(0)
, _good_sentences(0)
, _failed_checksum(0)
#endif
{
_term[0] = '\0';
}
//
// public methods
//
bool TinyGPS::encode(char c)
{
bool valid_sentence = false;
#ifndef _GPS_NO_STATS
++_encoded_characters;
#endif
switch(c)
{
case ',': // term terminators
_parity ^= c;
case '\r':
case '\n':
case '*':
if (_term_offset < sizeof(_term))
{
_term[_term_offset] = 0;
valid_sentence = term_complete();
}
++_term_number;
_term_offset = 0;
_is_checksum_term = c == '*';
return valid_sentence;
case '$': // sentence begin
_term_number = _term_offset = 0;
_parity = 0;
_sentence_type = _GPS_SENTENCE_OTHER;
_is_checksum_term = false;
_gps_data_good = false;
return valid_sentence;
}
// ordinary characters
if (_term_offset < sizeof(_term) - 1)
_term[_term_offset++] = c;
if (!_is_checksum_term)
_parity ^= c;
return valid_sentence;
}
#ifndef _GPS_NO_STATS
void TinyGPS::stats(unsigned long *chars, unsigned short *sentences, unsigned short *failed_cs)
{
if (chars) *chars = _encoded_characters;
if (sentences) *sentences = _good_sentences;
if (failed_cs) *failed_cs = _failed_checksum;
}
#endif
//
// internal utilities
//
int TinyGPS::from_hex(char a)
{
if (a >= 'A' && a <= 'F')
return a - 'A' + 10;
else if (a >= 'a' && a <= 'f')
return a - 'a' + 10;
else
return a - '0';
}
unsigned long TinyGPS::parse_decimal()
{
char *p = _term;
bool isneg = *p == '-';
if (isneg) ++p;
unsigned long ret = 100UL * gpsatol(p);
while (gpsisdigit(*p)) ++p;
if (*p == '.')
{
if (gpsisdigit(p[1]))
{
ret += 10 * (p[1] - '0');
if (gpsisdigit(p[2]))
ret += p[2] - '0';
}
}
return isneg ? -ret : ret;
}
// Parse a string in the form ddmm.mmmmmmm...
unsigned long TinyGPS::parse_degrees()
{
char *p;
unsigned long left_of_decimal = gpsatol(_term);
unsigned long hundred1000ths_of_minute = (left_of_decimal % 100UL) * 100000UL;
for (p=_term; gpsisdigit(*p); ++p);
if (*p == '.')
{
unsigned long mult = 10000;
while (gpsisdigit(*++p))
{
hundred1000ths_of_minute += mult * (*p - '0');
mult /= 10;
}
}
return (left_of_decimal / 100) * 1000000 + (hundred1000ths_of_minute + 3) / 6;
}
#define COMBINE(sentence_type, term_number) (((unsigned)(sentence_type) << 5) | term_number)
// Processes a just-completed term
// Returns true if new sentence has just passed checksum test and is validated
bool TinyGPS::term_complete()
{
if (_is_checksum_term)
{
byte checksum = 16 * from_hex(_term[0]) + from_hex(_term[1]);
if (checksum == _parity)
{
if (_gps_data_good)
{
#ifndef _GPS_NO_STATS
++_good_sentences;
#endif
_last_time_fix = _new_time_fix;
_last_position_fix = _new_position_fix;
switch(_sentence_type)
{
case _GPS_SENTENCE_GPRMC:
_time = _new_time;
_date = _new_date;
_latitude = _new_latitude;
_longitude = _new_longitude;
_speed = _new_speed;
_course = _new_course;
break;
case _GPS_SENTENCE_GPGGA:
_altitude = _new_altitude;
_time = _new_time;
_latitude = _new_latitude;
_longitude = _new_longitude;
_numsats = _new_numsats;
_hdop = _new_hdop;
break;
}
return true;
}
}
#ifndef _GPS_NO_STATS
else
++_failed_checksum;
#endif
return false;
}
// the first term determines the sentence type
if (_term_number == 0)
{
if (!gpsstrcmp(_term, _GPRMC_TERM))
_sentence_type = _GPS_SENTENCE_GPRMC;
else if (!gpsstrcmp(_term, _GPGGA_TERM))
_sentence_type = _GPS_SENTENCE_GPGGA;
else
_sentence_type = _GPS_SENTENCE_OTHER;
return false;
}
if (_sentence_type != _GPS_SENTENCE_OTHER && _term[0])
switch(COMBINE(_sentence_type, _term_number))
{
case COMBINE(_GPS_SENTENCE_GPRMC, 1): // Time in both sentences
case COMBINE(_GPS_SENTENCE_GPGGA, 1):
_new_time = parse_decimal();
_new_time_fix = millis();
break;
case COMBINE(_GPS_SENTENCE_GPRMC, 2): // GPRMC validity
_gps_data_good = _term[0] == 'A';
break;
case COMBINE(_GPS_SENTENCE_GPRMC, 3): // Latitude
case COMBINE(_GPS_SENTENCE_GPGGA, 2):
_new_latitude = parse_degrees();
_new_position_fix = millis();
break;
case COMBINE(_GPS_SENTENCE_GPRMC, 4): // N/S
case COMBINE(_GPS_SENTENCE_GPGGA, 3):
if (_term[0] == 'S')
_new_latitude = -_new_latitude;
break;
case COMBINE(_GPS_SENTENCE_GPRMC, 5): // Longitude
case COMBINE(_GPS_SENTENCE_GPGGA, 4):
_new_longitude = parse_degrees();
break;
case COMBINE(_GPS_SENTENCE_GPRMC, 6): // E/W
case COMBINE(_GPS_SENTENCE_GPGGA, 5):
if (_term[0] == 'W')
_new_longitude = -_new_longitude;
break;
case COMBINE(_GPS_SENTENCE_GPRMC, 7): // Speed (GPRMC)
_new_speed = parse_decimal();
break;
case COMBINE(_GPS_SENTENCE_GPRMC, 8): // Course (GPRMC)
_new_course = parse_decimal();
break;
case COMBINE(_GPS_SENTENCE_GPRMC, 9): // Date (GPRMC)
_new_date = gpsatol(_term);
break;
case COMBINE(_GPS_SENTENCE_GPGGA, 6): // Fix data (GPGGA)
_gps_data_good = _term[0] > '0';
break;
case COMBINE(_GPS_SENTENCE_GPGGA, 7): // Satellites used (GPGGA)
_new_numsats = (unsigned char)atoi(_term);
break;
case COMBINE(_GPS_SENTENCE_GPGGA, 8): // HDOP
_new_hdop = parse_decimal();
break;
case COMBINE(_GPS_SENTENCE_GPGGA, 9): // Altitude (GPGGA)
_new_altitude = parse_decimal();
break;
}
return false;
}
long TinyGPS::gpsatol(const char *str)
{
long ret = 0;
while (gpsisdigit(*str))
ret = 10 * ret + *str++ - '0';
return ret;
}
int TinyGPS::gpsstrcmp(const char *str1, const char *str2)
{
while (*str1 && *str1 == *str2)
++str1, ++str2;
return *str1;
}
/* static */
float TinyGPS::distance_between (float lat1, float long1, float lat2, float long2)
{
// returns distance in meters between two positions, both specified
// as signed decimal-degrees latitude and longitude. Uses great-circle
// distance computation for hypothetical sphere of radius 6372795 meters.
// Because Earth is no exact sphere, rounding errors may be up to 0.5%.
// Courtesy of Maarten Lamers
float delta = radians(long1-long2);
float sdlong = sin(delta);
float cdlong = cos(delta);
lat1 = radians(lat1);
lat2 = radians(lat2);
float slat1 = sin(lat1);
float clat1 = cos(lat1);
float slat2 = sin(lat2);
float clat2 = cos(lat2);
delta = (clat1 * slat2) - (slat1 * clat2 * cdlong);
delta = sq(delta);
delta += sq(clat2 * sdlong);
delta = sqrt(delta);
float denom = (slat1 * slat2) + (clat1 * clat2 * cdlong);
delta = atan2(delta, denom);
return delta * 6372795;
}
float TinyGPS::course_to (float lat1, float long1, float lat2, float long2)
{
// returns course in degrees (North=0, West=270) from position 1 to position 2,
// both specified as signed decimal-degrees latitude and longitude.
// Because Earth is no exact sphere, calculated course may be off by a tiny fraction.
// Courtesy of Maarten Lamers
float dlon = radians(long2-long1);
lat1 = radians(lat1);
lat2 = radians(lat2);
float a1 = sin(dlon) * cos(lat2);
float a2 = sin(lat1) * cos(lat2) * cos(dlon);
a2 = cos(lat1) * sin(lat2) - a2;
a2 = atan2(a1, a2);
if (a2 < 0.0)
{
a2 += TWO_PI;
}
return degrees(a2);
}
const char *TinyGPS::cardinal (float course)
{
static const char* directions[] = {"N", "NNE", "NE", "ENE", "E", "ESE", "SE", "SSE", "S", "SSW", "SW", "WSW", "W", "WNW", "NW", "NNW"};
int direction = (int)((course + 11.25f) / 22.5f);
return directions[direction % 16];
}
// lat/long in MILLIONTHs of a degree and age of fix in milliseconds
// (note: versions 12 and earlier gave this value in 100,000ths of a degree.
void TinyGPS::get_position(long *latitude, long *longitude, unsigned long *fix_age)
{
if (latitude) *latitude = _latitude;
if (longitude) *longitude = _longitude;
if (fix_age) *fix_age = _last_position_fix == GPS_INVALID_FIX_TIME ?
GPS_INVALID_AGE : millis() - _last_position_fix;
}
// date as ddmmyy, time as hhmmsscc, and age in milliseconds
void TinyGPS::get_datetime(unsigned long *date, unsigned long *time, unsigned long *age)
{
if (date) *date = _date;
if (time) *time = _time;
if (age) *age = _last_time_fix == GPS_INVALID_FIX_TIME ?
GPS_INVALID_AGE : millis() - _last_time_fix;
}
void TinyGPS::f_get_position(float *latitude, float *longitude, unsigned long *fix_age)
{
long lat, lon;
get_position(&lat, &lon, fix_age);
*latitude = lat == GPS_INVALID_ANGLE ? GPS_INVALID_F_ANGLE : (lat / 1000000.0);
*longitude = lat == GPS_INVALID_ANGLE ? GPS_INVALID_F_ANGLE : (lon / 1000000.0);
}
void TinyGPS::crack_datetime(int *year, byte *month, byte *day,
byte *hour, byte *minute, byte *second, byte *hundredths, unsigned long *age)
{
unsigned long date, time;
get_datetime(&date, &time, age);
if (year)
{
*year = date % 100;
*year += *year > 80 ? 1900 : 2000;
}
if (month) *month = (date / 100) % 100;
if (day) *day = date / 10000;
if (hour) *hour = time / 1000000;
if (minute) *minute = (time / 10000) % 100;
if (second) *second = (time / 100) % 100;
if (hundredths) *hundredths = time % 100;
}
float TinyGPS::f_altitude()
{
return _altitude == GPS_INVALID_ALTITUDE ? GPS_INVALID_F_ALTITUDE : _altitude / 100.0;
}
float TinyGPS::f_course()
{
return _course == GPS_INVALID_ANGLE ? GPS_INVALID_F_ANGLE : _course / 100.0;
}
float TinyGPS::f_speed_knots()
{
return _speed == GPS_INVALID_SPEED ? GPS_INVALID_F_SPEED : _speed / 100.0;
}
float TinyGPS::f_speed_mph()
{
float sk = f_speed_knots();
return sk == GPS_INVALID_F_SPEED ? GPS_INVALID_F_SPEED : _GPS_MPH_PER_KNOT * sk;
}
float TinyGPS::f_speed_mps()
{
float sk = f_speed_knots();
return sk == GPS_INVALID_F_SPEED ? GPS_INVALID_F_SPEED : _GPS_MPS_PER_KNOT * sk;
}
float TinyGPS::f_speed_kmph()
{
float sk = f_speed_knots();
return sk == GPS_INVALID_F_SPEED ? GPS_INVALID_F_SPEED : _GPS_KMPH_PER_KNOT * sk;
}
const float TinyGPS::GPS_INVALID_F_ANGLE = 1000.0;
const float TinyGPS::GPS_INVALID_F_ALTITUDE = 1000000.0;
const float TinyGPS::GPS_INVALID_F_SPEED = -1.0;