mirror of
https://github.com/k3ng/k3ng_rotator_controller.git
synced 2024-12-19 21:27:56 +00:00
322 lines
8.6 KiB
C++
Executable File
322 lines
8.6 KiB
C++
Executable File
/*
|
|
time.c - low level time and date functions
|
|
Copyright (c) Michael Margolis 2009-2014
|
|
|
|
This library is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU Lesser General Public
|
|
License as published by the Free Software Foundation; either
|
|
version 2.1 of the License, or (at your option) any later version.
|
|
|
|
This library is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
Lesser General Public License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public
|
|
License along with this library; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
1.0 6 Jan 2010 - initial release
|
|
1.1 12 Feb 2010 - fixed leap year calculation error
|
|
1.2 1 Nov 2010 - fixed setTime bug (thanks to Korman for this)
|
|
1.3 24 Mar 2012 - many edits by Paul Stoffregen: fixed timeStatus() to update
|
|
status, updated examples for Arduino 1.0, fixed ARM
|
|
compatibility issues, added TimeArduinoDue and TimeTeensy3
|
|
examples, add error checking and messages to RTC examples,
|
|
add examples to DS1307RTC library.
|
|
1.4 5 Sep 2014 - compatibility with Arduino 1.5.7
|
|
*/
|
|
|
|
#if ARDUINO >= 100
|
|
#include <Arduino.h>
|
|
#else
|
|
#include <WProgram.h>
|
|
#endif
|
|
|
|
#include "TimeLib.h"
|
|
|
|
static tmElements_t tm; // a cache of time elements
|
|
static time_t cacheTime; // the time the cache was updated
|
|
static uint32_t syncInterval = 300; // time sync will be attempted after this many seconds
|
|
|
|
void refreshCache(time_t t) {
|
|
if (t != cacheTime) {
|
|
breakTime(t, tm);
|
|
cacheTime = t;
|
|
}
|
|
}
|
|
|
|
int hour() { // the hour now
|
|
return hour(now());
|
|
}
|
|
|
|
int hour(time_t t) { // the hour for the given time
|
|
refreshCache(t);
|
|
return tm.Hour;
|
|
}
|
|
|
|
int hourFormat12() { // the hour now in 12 hour format
|
|
return hourFormat12(now());
|
|
}
|
|
|
|
int hourFormat12(time_t t) { // the hour for the given time in 12 hour format
|
|
refreshCache(t);
|
|
if( tm.Hour == 0 )
|
|
return 12; // 12 midnight
|
|
else if( tm.Hour > 12)
|
|
return tm.Hour - 12 ;
|
|
else
|
|
return tm.Hour ;
|
|
}
|
|
|
|
uint8_t isAM() { // returns true if time now is AM
|
|
return !isPM(now());
|
|
}
|
|
|
|
uint8_t isAM(time_t t) { // returns true if given time is AM
|
|
return !isPM(t);
|
|
}
|
|
|
|
uint8_t isPM() { // returns true if PM
|
|
return isPM(now());
|
|
}
|
|
|
|
uint8_t isPM(time_t t) { // returns true if PM
|
|
return (hour(t) >= 12);
|
|
}
|
|
|
|
int minute() {
|
|
return minute(now());
|
|
}
|
|
|
|
int minute(time_t t) { // the minute for the given time
|
|
refreshCache(t);
|
|
return tm.Minute;
|
|
}
|
|
|
|
int second() {
|
|
return second(now());
|
|
}
|
|
|
|
int second(time_t t) { // the second for the given time
|
|
refreshCache(t);
|
|
return tm.Second;
|
|
}
|
|
|
|
int day(){
|
|
return(day(now()));
|
|
}
|
|
|
|
int day(time_t t) { // the day for the given time (0-6)
|
|
refreshCache(t);
|
|
return tm.Day;
|
|
}
|
|
|
|
int weekday() { // Sunday is day 1
|
|
return weekday(now());
|
|
}
|
|
|
|
int weekday(time_t t) {
|
|
refreshCache(t);
|
|
return tm.Wday;
|
|
}
|
|
|
|
int month(){
|
|
return month(now());
|
|
}
|
|
|
|
int month(time_t t) { // the month for the given time
|
|
refreshCache(t);
|
|
return tm.Month;
|
|
}
|
|
|
|
int year() { // as in Processing, the full four digit year: (2009, 2010 etc)
|
|
return year(now());
|
|
}
|
|
|
|
int year(time_t t) { // the year for the given time
|
|
refreshCache(t);
|
|
return tmYearToCalendar(tm.Year);
|
|
}
|
|
|
|
/*============================================================================*/
|
|
/* functions to convert to and from system time */
|
|
/* These are for interfacing with time services and are not normally needed in a sketch */
|
|
|
|
// leap year calculator expects year argument as years offset from 1970
|
|
#define LEAP_YEAR(Y) ( ((1970+(Y))>0) && !((1970+(Y))%4) && ( ((1970+(Y))%100) || !((1970+(Y))%400) ) )
|
|
|
|
static const uint8_t monthDays[]={31,28,31,30,31,30,31,31,30,31,30,31}; // API starts months from 1, this array starts from 0
|
|
|
|
void breakTime(time_t timeInput, tmElements_t &tm){
|
|
// break the given time_t into time components
|
|
// this is a more compact version of the C library localtime function
|
|
// note that year is offset from 1970 !!!
|
|
|
|
uint8_t year;
|
|
uint8_t month, monthLength;
|
|
uint32_t time;
|
|
unsigned long days;
|
|
|
|
time = (uint32_t)timeInput;
|
|
tm.Second = time % 60;
|
|
time /= 60; // now it is minutes
|
|
tm.Minute = time % 60;
|
|
time /= 60; // now it is hours
|
|
tm.Hour = time % 24;
|
|
time /= 24; // now it is days
|
|
tm.Wday = ((time + 4) % 7) + 1; // Sunday is day 1
|
|
|
|
year = 0;
|
|
days = 0;
|
|
while((unsigned)(days += (LEAP_YEAR(year) ? 366 : 365)) <= time) {
|
|
year++;
|
|
}
|
|
tm.Year = year; // year is offset from 1970
|
|
|
|
days -= LEAP_YEAR(year) ? 366 : 365;
|
|
time -= days; // now it is days in this year, starting at 0
|
|
|
|
days=0;
|
|
month=0;
|
|
monthLength=0;
|
|
for (month=0; month<12; month++) {
|
|
if (month==1) { // february
|
|
if (LEAP_YEAR(year)) {
|
|
monthLength=29;
|
|
} else {
|
|
monthLength=28;
|
|
}
|
|
} else {
|
|
monthLength = monthDays[month];
|
|
}
|
|
|
|
if (time >= monthLength) {
|
|
time -= monthLength;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
tm.Month = month + 1; // jan is month 1
|
|
tm.Day = time + 1; // day of month
|
|
}
|
|
|
|
time_t makeTime(const tmElements_t &tm){
|
|
// assemble time elements into time_t
|
|
// note year argument is offset from 1970 (see macros in time.h to convert to other formats)
|
|
// previous version used full four digit year (or digits since 2000),i.e. 2009 was 2009 or 9
|
|
|
|
int i;
|
|
uint32_t seconds;
|
|
|
|
// seconds from 1970 till 1 jan 00:00:00 of the given year
|
|
seconds= tm.Year*(SECS_PER_DAY * 365);
|
|
for (i = 0; i < tm.Year; i++) {
|
|
if (LEAP_YEAR(i)) {
|
|
seconds += SECS_PER_DAY; // add extra days for leap years
|
|
}
|
|
}
|
|
|
|
// add days for this year, months start from 1
|
|
for (i = 1; i < tm.Month; i++) {
|
|
if ( (i == 2) && LEAP_YEAR(tm.Year)) {
|
|
seconds += SECS_PER_DAY * 29;
|
|
} else {
|
|
seconds += SECS_PER_DAY * monthDays[i-1]; //monthDay array starts from 0
|
|
}
|
|
}
|
|
seconds+= (tm.Day-1) * SECS_PER_DAY;
|
|
seconds+= tm.Hour * SECS_PER_HOUR;
|
|
seconds+= tm.Minute * SECS_PER_MIN;
|
|
seconds+= tm.Second;
|
|
return (time_t)seconds;
|
|
}
|
|
/*=====================================================*/
|
|
/* Low level system time functions */
|
|
|
|
static uint32_t sysTime = 0;
|
|
static uint32_t prevMillis = 0;
|
|
static uint32_t nextSyncTime = 0;
|
|
static timeStatus_t Status = timeNotSet;
|
|
|
|
getExternalTime getTimePtr; // pointer to external sync function
|
|
//setExternalTime setTimePtr; // not used in this version
|
|
|
|
#ifdef TIME_DRIFT_INFO // define this to get drift data
|
|
time_t sysUnsyncedTime = 0; // the time sysTime unadjusted by sync
|
|
#endif
|
|
|
|
|
|
time_t now() {
|
|
// calculate number of seconds passed since last call to now()
|
|
while (millis() - prevMillis >= 1000) {
|
|
// millis() and prevMillis are both unsigned ints thus the subtraction will always be the absolute value of the difference
|
|
sysTime++;
|
|
prevMillis += 1000;
|
|
#ifdef TIME_DRIFT_INFO
|
|
sysUnsyncedTime++; // this can be compared to the synced time to measure long term drift
|
|
#endif
|
|
}
|
|
if (nextSyncTime <= sysTime) {
|
|
if (getTimePtr != 0) {
|
|
time_t t = getTimePtr();
|
|
if (t != 0) {
|
|
setTime(t);
|
|
} else {
|
|
nextSyncTime = sysTime + syncInterval;
|
|
Status = (Status == timeNotSet) ? timeNotSet : timeNeedsSync;
|
|
}
|
|
}
|
|
}
|
|
return (time_t)sysTime;
|
|
}
|
|
|
|
void setTime(time_t t) {
|
|
#ifdef TIME_DRIFT_INFO
|
|
if(sysUnsyncedTime == 0)
|
|
sysUnsyncedTime = t; // store the time of the first call to set a valid Time
|
|
#endif
|
|
|
|
sysTime = (uint32_t)t;
|
|
nextSyncTime = (uint32_t)t + syncInterval;
|
|
Status = timeSet;
|
|
prevMillis = millis(); // restart counting from now (thanks to Korman for this fix)
|
|
}
|
|
|
|
void setTime(int hr,int min,int sec,int dy, int mnth, int yr){
|
|
// year can be given as full four digit year or two digts (2010 or 10 for 2010);
|
|
//it is converted to years since 1970
|
|
if( yr > 99)
|
|
yr = yr - 1970;
|
|
else
|
|
yr += 30;
|
|
tm.Year = yr;
|
|
tm.Month = mnth;
|
|
tm.Day = dy;
|
|
tm.Hour = hr;
|
|
tm.Minute = min;
|
|
tm.Second = sec;
|
|
setTime(makeTime(tm));
|
|
}
|
|
|
|
void adjustTime(long adjustment) {
|
|
sysTime += adjustment;
|
|
}
|
|
|
|
// indicates if time has been set and recently synchronized
|
|
timeStatus_t timeStatus() {
|
|
now(); // required to actually update the status
|
|
return Status;
|
|
}
|
|
|
|
void setSyncProvider( getExternalTime getTimeFunction){
|
|
getTimePtr = getTimeFunction;
|
|
nextSyncTime = sysTime;
|
|
now(); // this will sync the clock
|
|
}
|
|
|
|
void setSyncInterval(time_t interval){ // set the number of seconds between re-sync
|
|
syncInterval = (uint32_t)interval;
|
|
nextSyncTime = sysTime + syncInterval;
|
|
}
|