mirror of
https://github.com/k3ng/k3ng_rotator_controller.git
synced 2025-01-05 04:44:18 +00:00
138 lines
5.0 KiB
C++
138 lines
5.0 KiB
C++
|
// This file is available in electronic form at http://www.psa.es/sdg/sunpos.htm
|
||
|
|
||
|
#include "sunpos.h"
|
||
|
#include <math.h>
|
||
|
|
||
|
void sunpos(cTime udtTime,cLocation udtLocation, cSunCoordinates *udtSunCoordinates)
|
||
|
{
|
||
|
// Main variables
|
||
|
double dElapsedJulianDays;
|
||
|
double dDecimalHours;
|
||
|
double dEclipticLongitude;
|
||
|
double dEclipticObliquity;
|
||
|
double dRightAscension;
|
||
|
double dDeclination;
|
||
|
|
||
|
// Auxiliary variables
|
||
|
double dY;
|
||
|
double dX;
|
||
|
|
||
|
|
||
|
|
||
|
// Calculate difference in days between the current Julian Day
|
||
|
// and JD 2451545.0, which is noon 1 January 2000 Universal Time
|
||
|
{
|
||
|
double dJulianDate;
|
||
|
long int liAux1;
|
||
|
long int liAux2;
|
||
|
// Calculate time of the day in UT decimal hours
|
||
|
dDecimalHours = udtTime.dHours + (udtTime.dMinutes
|
||
|
+ udtTime.dSeconds / 60.0 ) / 60.0;
|
||
|
// Calculate current Julian Day
|
||
|
liAux1 =(udtTime.iMonth-14)/12;
|
||
|
liAux2=(1461*(udtTime.iYear + 4800 + liAux1))/4 + (367*(udtTime.iMonth
|
||
|
- 2-12*liAux1))/12- (3*((udtTime.iYear + 4900
|
||
|
+ liAux1)/100))/4+udtTime.iDay-32075;
|
||
|
|
||
|
// dJulianDate=(double)(liAux2)-0.5+dDecimalHours/24.0;
|
||
|
// Calculate difference between current Julian Day and JD 2451545.0
|
||
|
// dElapsedJulianDays = dJulianDate-2451545.0;
|
||
|
|
||
|
// 140113 VE5VA
|
||
|
// The original way of calculating elapsed Julian days required
|
||
|
// more precision than is possible in a 32-bit float, so change
|
||
|
// the order of the calculation to preserve the significant digits.
|
||
|
liAux2 -= 2451545L;
|
||
|
dElapsedJulianDays = (double)liAux2-0.5+dDecimalHours/24.0;
|
||
|
}
|
||
|
|
||
|
/* old Julian day calculation
|
||
|
|
||
|
// Calculate difference in days between the current Julian Day
|
||
|
// and JD 2451545.0, which is noon 1 January 2000 Universal Time
|
||
|
{
|
||
|
double dJulianDate;
|
||
|
long int liAux1;
|
||
|
long int liAux2;
|
||
|
// Calculate time of the day in UT decimal hours
|
||
|
dDecimalHours = udtTime.dHours + (udtTime.dMinutes
|
||
|
+ udtTime.dSeconds / 60.0 ) / 60.0;
|
||
|
// Calculate current Julian Day
|
||
|
liAux1 =(udtTime.iMonth-14)/12;
|
||
|
liAux2=(1461*(udtTime.iYear + 4800 + liAux1))/4 + (367*(udtTime.iMonth
|
||
|
- 2-12*liAux1))/12- (3*((udtTime.iYear + 4900
|
||
|
+ liAux1)/100))/4+udtTime.iDay-32075;
|
||
|
dJulianDate=(double)(liAux2)-0.5+dDecimalHours/24.0;
|
||
|
// Calculate difference between current Julian Day and JD 2451545.0
|
||
|
dElapsedJulianDays = dJulianDate-2451545.0;
|
||
|
}
|
||
|
|
||
|
*/
|
||
|
|
||
|
// Calculate ecliptic coordinates (ecliptic longitude and obliquity of the
|
||
|
// ecliptic in radians but without limiting the angle to be less than 2*Pi
|
||
|
// (i.e., the result may be greater than 2*Pi)
|
||
|
{
|
||
|
double dMeanLongitude;
|
||
|
double dMeanAnomaly;
|
||
|
double dOmega;
|
||
|
dOmega=2.1429-0.0010394594*dElapsedJulianDays;
|
||
|
dMeanLongitude = 4.8950630+ 0.017202791698*dElapsedJulianDays; // Radians
|
||
|
dMeanAnomaly = 6.2400600+ 0.0172019699*dElapsedJulianDays;
|
||
|
dEclipticLongitude = dMeanLongitude + 0.03341607*sin( dMeanAnomaly )
|
||
|
+ 0.00034894*sin( 2*dMeanAnomaly )-0.0001134
|
||
|
-0.0000203*sin(dOmega);
|
||
|
dEclipticObliquity = 0.4090928 - 6.2140e-9*dElapsedJulianDays
|
||
|
+0.0000396*cos(dOmega);
|
||
|
}
|
||
|
|
||
|
// Calculate celestial coordinates ( right ascension and declination ) in radians
|
||
|
// but without limiting the angle to be less than 2*Pi (i.e., the result may be
|
||
|
// greater than 2*Pi)
|
||
|
{
|
||
|
double dSin_EclipticLongitude;
|
||
|
dSin_EclipticLongitude= sin( dEclipticLongitude );
|
||
|
dY = cos( dEclipticObliquity ) * dSin_EclipticLongitude;
|
||
|
dX = cos( dEclipticLongitude );
|
||
|
dRightAscension = atan2( dY,dX );
|
||
|
if( dRightAscension < 0.0 ) dRightAscension = dRightAscension + twopi;
|
||
|
dDeclination = asin( sin( dEclipticObliquity )*dSin_EclipticLongitude );
|
||
|
}
|
||
|
|
||
|
// Calculate local coordinates ( azimuth and zenith angle ) in degrees
|
||
|
{
|
||
|
double dGreenwichMeanSiderealTime;
|
||
|
double dLocalMeanSiderealTime;
|
||
|
double dLatitudeInRadians;
|
||
|
double dHourAngle;
|
||
|
double dCos_Latitude;
|
||
|
double dSin_Latitude;
|
||
|
double dCos_HourAngle;
|
||
|
double dParallax;
|
||
|
dGreenwichMeanSiderealTime = 6.6974243242 +
|
||
|
0.0657098283*dElapsedJulianDays
|
||
|
+ dDecimalHours;
|
||
|
dLocalMeanSiderealTime = (dGreenwichMeanSiderealTime*15
|
||
|
+ udtLocation.dLongitude)*rad;
|
||
|
dHourAngle = dLocalMeanSiderealTime - dRightAscension;
|
||
|
dLatitudeInRadians = udtLocation.dLatitude*rad;
|
||
|
dCos_Latitude = cos( dLatitudeInRadians );
|
||
|
dSin_Latitude = sin( dLatitudeInRadians );
|
||
|
dCos_HourAngle= cos( dHourAngle );
|
||
|
udtSunCoordinates->dZenithAngle = (acos( dCos_Latitude*dCos_HourAngle
|
||
|
*cos(dDeclination) + sin( dDeclination )*dSin_Latitude));
|
||
|
dY = -sin( dHourAngle );
|
||
|
dX = tan( dDeclination )*dCos_Latitude - dSin_Latitude*dCos_HourAngle;
|
||
|
udtSunCoordinates->dAzimuth = atan2( dY, dX );
|
||
|
if ( udtSunCoordinates->dAzimuth < 0.0 )
|
||
|
udtSunCoordinates->dAzimuth = udtSunCoordinates->dAzimuth + twopi;
|
||
|
udtSunCoordinates->dAzimuth = udtSunCoordinates->dAzimuth/rad;
|
||
|
// Parallax Correction
|
||
|
dParallax=(dEarthMeanRadius/dAstronomicalUnit)
|
||
|
*sin(udtSunCoordinates->dZenithAngle);
|
||
|
udtSunCoordinates->dZenithAngle=(udtSunCoordinates->dZenithAngle
|
||
|
+ dParallax)/rad;
|
||
|
}
|
||
|
}
|
||
|
|