heads/Makefile

701 lines
21 KiB
Makefile
Raw Normal View History

# Need to set CB_OUTPUT_FILE before board .config included so
# that target overrides in x230/x430-flash (eg) are properly handled
GIT_HASH := $(shell git rev-parse HEAD)
GIT_STATUS := $(shell \
if git diff --exit-code >/dev/null ; then \
echo clean ; \
else \
echo dirty ; \
fi)
HEADS_GIT_VERSION := $(shell git describe --abbrev=7 --tags --dirty)
# Override BRAND_NAME to set the name displayed in the UI, filenames, versions, etc.
BRAND_NAME ?= Heads
CB_OUTPUT_BASENAME := $(shell echo $(BRAND_NAME) | tr A-Z a-z)-$(BOARD)-$(HEADS_GIT_VERSION)
CB_OUTPUT_FILE := $(CB_OUTPUT_BASENAME).rom
CB_OUTPUT_FILE_GPG_INJ := $(CB_OUTPUT_BASENAME)-gpg-injected.rom
CB_BOOTBLOCK_FILE := $(CB_OUTPUT_BASENAME).bootblock
LB_OUTPUT_FILE := linuxboot-$(BOARD)-$(HEADS_GIT_VERSION).rom
all:
-include .config
modules-y :=
pwd := $(shell pwd)
config := $(pwd)/config
# These are dynamic, must not expand right here
build = $(pwd)/build/$(CONFIG_TARGET_ARCH)
packages = $(pwd)/packages/$(CONFIG_TARGET_ARCH)
INSTALL = $(pwd)/install/$(CONFIG_TARGET_ARCH)
log_dir = $(build)/log
board_build = $(build)/$(BOARD)
# Controls how many parallel jobs are invoked in subshells
CPUS ?= $(shell nproc)
MAKE_JOBS ?= -j$(CPUS) --max-load 16
WGET ?= wget
# Timestamps should be in ISO format
DATE=`date --rfc-3339=seconds`
BOARD ?= qemu-coreboot-fbwhiptail-tpm1
CONFIG := $(pwd)/boards/$(BOARD)/$(BOARD).config
ifneq "y" "$(shell [ -r '$(CONFIG)' ] && echo y)"
$(error $(CONFIG): board configuration does not exist)
endif
# By default, we are building for x86, up to a board to change this variable
CONFIG_TARGET_ARCH := x86
include $(CONFIG)
# Unless otherwise specified, we are building for heads
CONFIG_HEADS ?= y
# Unless otherwise specified, we are building bash to have non-interactive shell for scripts (arrays and bashisms)
CONFIG_BASH ?= y
# Determine arch part for a host triplet
ifeq "$(CONFIG_TARGET_ARCH)" "x86"
MUSL_ARCH := x86_64
else ifeq "$(CONFIG_TARGET_ARCH)" "ppc64"
MUSL_ARCH := powerpc64le
else
$(error "Unexpected value of $$(CONFIG_TARGET_ARCH): $(CONFIG_TARGET_ARCH)")
endif
# Create directories if they don't already exist
BUILD_LOG := $(shell mkdir -p "$(log_dir)")
PACKAGES := $(shell mkdir -p "$(packages)")
# record the build date / git hashes and other files here
HASHES := $(board_build)/hashes.txt
SIZES := $(board_build)/sizes.txt
# Create the board output directory if it doesn't already exist
BOARD_LOG := $(shell \
mkdir -p "$(board_build)" ; \
echo "$(DATE) $(GIT_HASH) $(GIT_STATUS)" > "$(HASHES)" ; \
echo "$(DATE) $(GIT_HASH) $(GIT_STATUS)" > "$(SIZES)" ; \
)
ifeq "y" "$(CONFIG_LINUX_BUNDLED)"
# Create empty initrd for initial kernel "without" initrd.
$(shell cpio -o < /dev/null > $(board_build)/initrd.cpio)
endif
# If V is set in the environment, do not redirect the tee
# command to /dev/null.
ifeq "$V" ""
VERBOSE_REDIRECT := > /dev/null
# Not verbose, so we only show the header
define do =
@echo "$(DATE) $1 $(2:$(pwd)/%=%)"
@$3
endef
else
# Verbose, so we display what we are doing
define do =
@echo "$(DATE) $1 $(2:$(pwd)/%=%)"
$3
endef
endif
# Create a temporary directory for the initrd
initrd_dir := $(BOARD)
initrd_tmp_dir := $(shell mktemp -d)
initrd_lib_dir := $(initrd_tmp_dir)/lib
initrd_bin_dir := $(initrd_tmp_dir)/bin
modules-y += initrd
$(shell mkdir -p "$(initrd_lib_dir)" "$(initrd_bin_dir)")
# We are running our own version of make,
# proceed with the build.
# Force pipelines to fail if any of the commands in the pipe fail
SHELL := /usr/bin/env bash
.SHELLFLAGS := -o pipefail -c
# Include the musl-cross module early so that $(CROSS) will
# be defined prior to any other module.
include modules/musl-cross
musl_dep := musl-cross
Addition of qemu-(fb)whiptail-tpm2(-hotp) boards -coreboot support of TPM v2.0 (shared config for TPM2 support across all 4 previous variations) -swtpm set to be launched under TPM v2.0 mode under board config -Documentation file under each board.md softlinks to qemu-coreboot-fbwhiptail-tpm1.md (which has been generalized) This is skeleton for TPM v2 integration under Heads ------------- WiP TODO: - libcurl cannot be built as a tpm2-tools dependency as of now not sure why. curl currently needs to be added in board config to be built - Note: tpm-reset (master and here) needs some review, no handle of no tpm use case. Caller is responsible to not call it otherwise does nothing - init tries to bind fd and fails currently - Note: Check if whiptail is different of fbwhiptail in clearing screen. As of now every clear seems to be removed, still whiptail clears previous console output - When no OS' /boot can be mounted, do not try to TPM reset (will fail) - seal-hotpkey is not working properly - setting disk unlock key asks for TPM ownership passphrase (sealing in NV requires ownership, but text is misleading user as if reowning TPM) - We should cache input, feed tpm behind the scene and wipe passphrase and state clearly that this is TPM disk unlock kye passphrase. - primary key from TPM2 is invalid most of the time from kexec-select-boot and verifying global hashes but is setuped correctly at disk unlock key setup - would be nice to take advantage of bash function tracing to understand where we are for debugging purposes, code takes ash in consideration only - tpmr says it implements nv calls but actually doesn't. Removing those falsely wrapped functions would help. - Implementing them would be better - REVIEW TODOS IN CODE - READD CIRCLECI CONFIG Current state: - TPM unseal works without disk unlock key and generates TOTP properly (was missing die condition at unseal to not produce always good TOTP even if invalid) - TPM disk encryption key fails. Hypothesis is that sealing with USB drivers loaded and measures in inconsistent with sealed with/without. - TPM disk unsealing happens without USB modules being loaded in non-HOTP setup. This fails. - Current tests are with fbwhiptail (no clear called so having traces on command line of what happens) - Testing with HOTP implementation for sealing/unsealing since that forces USB module loads on each boot to remove this from failing possibilities
2022-08-25 18:43:31 +00:00
target := $(shell echo $(CROSS) | grep -Eoe '([^/]*?)-linux-musl')
arch := $(subst -linux-musl, , $(target))
heads_cc := $(CROSS)gcc \
-fdebug-prefix-map=$(pwd)=heads \
-gno-record-gcc-switches \
-D__MUSL__ \
-isystem $(INSTALL)/include \
-L$(INSTALL)/lib \
# Cross-compiling with pkg-config requires clearing PKG_CONFIG_PATH and setting
# both PKG_CONFIG_LIBDIR and PKG_CONFIG_SYSROOT_DIR.
# https://autotools.info/pkgconfig/cross-compiling.html
CROSS_TOOLS_NOCC := \
AR="$(CROSS)ar" \
LD="$(CROSS)ld" \
STRIP="$(CROSS)strip" \
NM="$(CROSS)nm" \
OBJCOPY="$(CROSS)objcopy" \
OBJDUMP="$(CROSS)objdump" \
PKG_CONFIG_PATH= \
PKG_CONFIG_LIBDIR="$(INSTALL)/lib/pkgconfig" \
PKG_CONFIG_SYSROOT_DIR="$(INSTALL)" \
CROSS_TOOLS := \
CC="$(heads_cc)" \
$(CROSS_TOOLS_NOCC) \
Addition of qemu-(fb)whiptail-tpm2(-hotp) boards -coreboot support of TPM v2.0 (shared config for TPM2 support across all 4 previous variations) -swtpm set to be launched under TPM v2.0 mode under board config -Documentation file under each board.md softlinks to qemu-coreboot-fbwhiptail-tpm1.md (which has been generalized) This is skeleton for TPM v2 integration under Heads ------------- WiP TODO: - libcurl cannot be built as a tpm2-tools dependency as of now not sure why. curl currently needs to be added in board config to be built - Note: tpm-reset (master and here) needs some review, no handle of no tpm use case. Caller is responsible to not call it otherwise does nothing - init tries to bind fd and fails currently - Note: Check if whiptail is different of fbwhiptail in clearing screen. As of now every clear seems to be removed, still whiptail clears previous console output - When no OS' /boot can be mounted, do not try to TPM reset (will fail) - seal-hotpkey is not working properly - setting disk unlock key asks for TPM ownership passphrase (sealing in NV requires ownership, but text is misleading user as if reowning TPM) - We should cache input, feed tpm behind the scene and wipe passphrase and state clearly that this is TPM disk unlock kye passphrase. - primary key from TPM2 is invalid most of the time from kexec-select-boot and verifying global hashes but is setuped correctly at disk unlock key setup - would be nice to take advantage of bash function tracing to understand where we are for debugging purposes, code takes ash in consideration only - tpmr says it implements nv calls but actually doesn't. Removing those falsely wrapped functions would help. - Implementing them would be better - REVIEW TODOS IN CODE - READD CIRCLECI CONFIG Current state: - TPM unseal works without disk unlock key and generates TOTP properly (was missing die condition at unseal to not produce always good TOTP even if invalid) - TPM disk encryption key fails. Hypothesis is that sealing with USB drivers loaded and measures in inconsistent with sealed with/without. - TPM disk unsealing happens without USB modules being loaded in non-HOTP setup. This fails. - Current tests are with fbwhiptail (no clear called so having traces on command line of what happens) - Testing with HOTP implementation for sealing/unsealing since that forces USB module loads on each boot to remove this from failing possibilities
2022-08-25 18:43:31 +00:00
# Targets to build payload only
.PHONY: payload
payload: $(build)/$(BOARD)/bzImage $(build)/$(initrd_dir)/initrd.cpio.xz
ifeq ($(CONFIG_COREBOOT), y)
all: $(board_build)/$(CB_OUTPUT_FILE)
ifneq ($(CONFIG_COREBOOT_BOOTBLOCK),)
all: $(board_build)/$(CB_BOOTBLOCK_FILE)
endif
else ifeq ($(CONFIG_LINUXBOOT), y)
all: $(board_build)/$(LB_OUTPUT_FILE)
else
$(error "$(BOARD): neither CONFIG_COREBOOT nor CONFIG_LINUXBOOT is set?")
endif
Addition of qemu-(fb)whiptail-tpm2(-hotp) boards -coreboot support of TPM v2.0 (shared config for TPM2 support across all 4 previous variations) -swtpm set to be launched under TPM v2.0 mode under board config -Documentation file under each board.md softlinks to qemu-coreboot-fbwhiptail-tpm1.md (which has been generalized) This is skeleton for TPM v2 integration under Heads ------------- WiP TODO: - libcurl cannot be built as a tpm2-tools dependency as of now not sure why. curl currently needs to be added in board config to be built - Note: tpm-reset (master and here) needs some review, no handle of no tpm use case. Caller is responsible to not call it otherwise does nothing - init tries to bind fd and fails currently - Note: Check if whiptail is different of fbwhiptail in clearing screen. As of now every clear seems to be removed, still whiptail clears previous console output - When no OS' /boot can be mounted, do not try to TPM reset (will fail) - seal-hotpkey is not working properly - setting disk unlock key asks for TPM ownership passphrase (sealing in NV requires ownership, but text is misleading user as if reowning TPM) - We should cache input, feed tpm behind the scene and wipe passphrase and state clearly that this is TPM disk unlock kye passphrase. - primary key from TPM2 is invalid most of the time from kexec-select-boot and verifying global hashes but is setuped correctly at disk unlock key setup - would be nice to take advantage of bash function tracing to understand where we are for debugging purposes, code takes ash in consideration only - tpmr says it implements nv calls but actually doesn't. Removing those falsely wrapped functions would help. - Implementing them would be better - REVIEW TODOS IN CODE - READD CIRCLECI CONFIG Current state: - TPM unseal works without disk unlock key and generates TOTP properly (was missing die condition at unseal to not produce always good TOTP even if invalid) - TPM disk encryption key fails. Hypothesis is that sealing with USB drivers loaded and measures in inconsistent with sealed with/without. - TPM disk unsealing happens without USB modules being loaded in non-HOTP setup. This fails. - Current tests are with fbwhiptail (no clear called so having traces on command line of what happens) - Testing with HOTP implementation for sealing/unsealing since that forces USB module loads on each boot to remove this from failing possibilities
2022-08-25 18:43:31 +00:00
all payload:
2018-09-18 17:07:40 +00:00
@sha256sum $< | tee -a "$(HASHES)"
@stat -c "%8s:%n" $< | tee -a "$(SIZES)"
# Disable all built in rules
.INTERMEDIATE:
.SUFFIXES:
FORCE:
# Copies config while replacing predefined placeholders with actual values
define install_config =
sed -e 's!@BOARD_BUILD_DIR@!$(board_build)!g' \
-e 's!@BLOB_DIR@!$(pwd)/blobs!g' \
-e 's!@BRAND_NAME@!$(BRAND_NAME)!g' \
"$1" > "$2"
endef
# Make helpers to operate on lists of things
# Prefix is "smart" and doesn't add the prefix for absolute file paths
define prefix =
$(foreach _, $2, $(if $(patsubst /%,,$_),$1$_,$_))
endef
define map =
$(foreach _,$2,$(eval $(call $1,$_)))
endef
# Bring in all of the module definitions;
# these are the external pieces that will be downloaded and built
# as part of creating the Heads firmware image.
include modules/*
define bins =
$(foreach m,$1,$(call prefix,$(build)/$($m_dir)/,$($m_output)))
endef
define libs =
$(foreach m,$1,$(call prefix,$(build)/$($m_dir)/,$($m_libraries)))
endef
define outputs =
$(foreach m,$1,\
$(call bins,$m)\
$(call libs,$m)\
)
endef
#
# Build a cpio from a directory
#
define do-cpio =
$(call do,CPIO ,$1,\
( cd "$2"; \
find . \
| cpio \
--quiet \
-H newc \
-o \
) \
| ./bin/cpio-clean \
> "$1.tmp" \
)
@if ! cmp --quiet "$1.tmp" "$1" ; then \
mv "$1.tmp" "$1" ; \
else \
echo "$(DATE) UNCHANGED $(1:$(pwd)/%=%)" ; \
rm "$1.tmp" ; \
fi
2018-09-18 17:07:40 +00:00
@sha256sum "$1" | tee -a "$(HASHES)"
@stat -c "%8s:%n" "$1" | tee -a "$(SIZES)"
2018-09-18 17:07:40 +00:00
$(call do,HASHES , $1,\
( cd "$2"; \
2018-09-18 17:07:40 +00:00
echo "-----" ; \
find . -type f -print0 \
2018-09-18 17:07:40 +00:00
| xargs -0 sha256sum ; \
echo "-----" ; \
2018-09-18 16:35:19 +00:00
) >> "$(HASHES)" \
)
$(call do,SIZES , $1,\
( cd "$2"; \
echo "-----" ; \
find . -type f -print0 \
| xargs -0 stat -c "%8s:%n" ; \
echo "-----" ; \
) >> "$(SIZES)" \
)
endef
define do-copy =
$(call do,INSTALL ,$1 => $2,\
if cmp --quiet "$1" "$2" ; then \
echo "$(DATE) UNCHANGED $(1:$(pwd)/%=%)" ; \
fi ; \
cp -a --remove-destination "$1" "$2" ; \
)
@sha256sum "$(2:$(pwd)/%=%)"
@stat -c "%8s:%n" "$(2:$(pwd)/%=%)"
endef
#
# Generate the targets for a module.
#
# Special variables like $@ must be written as $$@ to avoid
# expansion during the first evaluation.
#
define define_module =
# if they have not defined a separate base dir, define it
# as the same as their build dir.
$(eval $1_base_dir = $(or $($1_base_dir),$($1_dir)))
# Dynamically defined modules must tell us what module file defined them
$(eval $1_module_file = $(or $($1_module_file),$1))
ifneq ("$($1_repo)","")
$(eval $1_patch_name = $1$(if $($1_patch_version),-$($1_patch_version),))
# First time:
# Checkout the tree instead and create the canary file with repo and
# revision so that we know that the files are all present and their
# version.
#
# Other times:
# If .canary contains the same repo and revision combination, do nothing.
# Otherwise, pull a new revision and checkout with update of submodules
#
# No signature hashes are checked in this case, since we don't have a
# stable version to compare against.
#
# XXX: "git clean -dffx" is a hack for coreboot during commit switching, need
# module-specific cleanup action to get rid of it.
$(build)/$($1_base_dir)/.canary: FORCE
if [ ! -e "$$@" ]; then \
git clone $($1_repo) "$(build)/$($1_base_dir)"; \
git -C "$(build)/$($1_base_dir)" reset --hard $($1_commit_hash) && git submodule update --init --checkout; \
echo -n '$($1_repo)|$($1_commit_hash)' > "$$@"; \
elif [ "$$$$(cat "$$@")" != '$($1_repo)|$($1_commit_hash)' ]; then \
echo "Switching $1 to $($1_repo) at $($1_commit_hash)" && \
git -C "$(build)/$($1_base_dir)" fetch $($1_repo) $($1_commit_hash) && \
git -C "$(build)/$($1_base_dir)" reset --hard $($1_commit_hash) && \
git -C "$(build)/$($1_base_dir)" clean -df && \
git -C "$(build)/$($1_base_dir)" clean -dffx payloads util/cbmem && \
git -C "$(build)/$($1_base_dir)" submodule sync && \
git -C "$(build)/$($1_base_dir)" submodule update --init --checkout && \
echo -n '$($1_repo)|$($1_commit_hash)' > "$$@"; \
fi
if [ ! -e "$(build)/$($1_base_dir)/.patched" ]; then \
if [ -r patches/$($1_patch_name).patch ]; then \
2022-08-30 21:53:57 +00:00
( git apply --verbose --reject --binary --directory build/$(CONFIG_TARGET_ARCH)/$($1_base_dir) ) \
< patches/$($1_patch_name).patch \
|| exit 1 ; \
fi && \
if [ -d patches/$($1_patch_name) ] && \
[ -r patches/$($1_patch_name) ] ; then \
for patch in patches/$($1_patch_name)/*.patch ; do \
echo "Applying patch file : $$$$patch " ; \
( git apply --verbose --reject --binary --directory build/$(CONFIG_TARGET_ARCH)/$($1_base_dir) ) \
< $$$$patch \
|| exit 1 ; \
done ; \
fi && \
touch "$(build)/$($1_base_dir)/.patched"; \
fi
else
$(eval $1_patch_version ?= $($1_version))
$(eval $1_patch_name = $1-$($1_patch_version))
# Fetch and verify the source tar file
# wget creates it early, so we have to cleanup if it fails
$(packages)/$($1_tar):
$(call do,WGET,$($1_url),\
if ! $(WGET) -O "$$@.tmp" $($1_url) ; then \
exit 1 ; \
fi ; \
mv "$$@.tmp" "$$@" \
)
$(packages)/.$1-$($1_version)_verify: $(packages)/$($1_tar)
echo "$($1_hash) $$^" | sha256sum --check -
@touch "$$@"
# Unpack the tar file and touch the canary so that we know
# that the files are all present
$(build)/$($1_base_dir)/.canary: $(packages)/.$1-$($1_version)_verify
mkdir -p "$$(dir $$@)"
tar -xf "$(packages)/$($1_tar)" $(or $($1_tar_opt),--strip 1) -C "$$(dir $$@)"
if [ -r patches/$($1_patch_name).patch ]; then \
2022-08-30 21:53:57 +00:00
( git apply --verbose --reject --binary --directory build/$(CONFIG_TARGET_ARCH)/$($1_base_dir) ) \
< patches/$($1_patch_name).patch \
|| exit 1 ; \
fi
if [ -d patches/$($1_patch_name) ] && \
[ -r patches/$($1_patch_name) ] ; then \
for patch in patches/$($1_patch_name)/*.patch ; do \
echo "Applying patch file : $$$$patch " ; \
2022-08-30 21:53:57 +00:00
( git apply --verbose --reject --binary --directory build/$(CONFIG_TARGET_ARCH)/$($1_base_dir) ) \
< $$$$patch \
|| exit 1 ; \
done ; \
fi
@touch "$$@"
endif
2018-02-05 20:28:33 +00:00
# Allow the module to override the destination configuration file
# via a relative path. Linux uses this to have a per-board build.
$(eval $1_config_file_path := $(build)/$($1_dir)/$(or $($1_config_file),.config))
ifeq "$($1_config)" ""
# There is no official .config file
$($1_config_file_path): $(build)/$($1_base_dir)/.canary
2018-02-05 20:28:33 +00:00
@mkdir -p $$(dir $$@)
@touch "$$@"
else
# Copy the stored config file into the unpacked directory
$($1_config_file_path): $($1_config) $(build)/$($1_base_dir)/.canary
2018-02-05 20:28:33 +00:00
@mkdir -p $$(dir $$@)
2018-02-05 21:27:48 +00:00
$(call do-copy,$($1_config),$$@)
endif
2016-12-13 18:10:21 +00:00
# The first time we have to wait for all the dependencies to be built
# before we can configure the target. Once the dep has been built,
# we only depend on it for a rebuild.
$(eval $1_config_wait := $(foreach d,$($1_depends),\
$(shell [ -r $(build)/$($d_dir)/.build ] || echo $d)))
# Use the module's configure variable to build itself
# this has to wait for the dependencies to be built since
# cross compilers and libraries might be messed up
$(dir $($1_config_file_path)).configured: \
$(build)/$($1_base_dir)/.canary \
$(foreach d,$($1_config_wait),$(build)/$($d_dir)/.build) \
2018-02-05 20:28:33 +00:00
$($1_config_file_path) \
modules/$($1_module_file)
@echo "$(DATE) CONFIG $1"
@( \
cd "$(build)/$($1_dir)" ; \
echo "$($1_configure)"; \
$($1_configure) \
) \
< /dev/null \
2>&1 \
| tee "$(log_dir)/$1.configure.log" \
$(VERBOSE_REDIRECT)
@touch "$$@"
# Short hand for our module build target
$1: \
$(build)/$($1_dir)/.build \
$(call outputs,$1) \
# Target for all of the outputs, which depend on their dependent modules
# being built, as well as this module being configured
$(call outputs,$1): $(build)/$($1_dir)/.build
# If any of the outputs are missing, we should force a rebuild
# of the entire module
$(eval $1.force = $(shell \
stat $(call outputs,$1) >/dev/null 2>/dev/null || echo FORCE \
))
$(build)/$($1_dir)/.build: $($1.force) \
$(foreach d,$($1_depends),$(build)/$($d_dir)/.build) \
$(dir $($1_config_file_path)).configured \
2018-02-05 20:28:33 +00:00
@echo "$(DATE) MAKE $1"
+@( \
echo "$(MAKE) \
-C \"$(build)/$($1_dir)\" \
$($1_target)" ; \
$(MAKE) \
-C "$(build)/$($1_dir)" \
$($1_target) \
) \
< /dev/null \
2>&1 \
| tee "$(log_dir)/$1.log" \
$(VERBOSE_REDIRECT) \
|| ( \
echo "tail $(log_dir)/$1.log"; \
echo "-----"; \
tail -20 "$(log_dir)/$1.log"; \
exit 1; \
)
$(call do,DONE,$1,\
touch $(build)/$($1_dir)/.build \
)
$1.clean:
-$(RM) "$(build)/$($1_dir)/.configured"
-$(MAKE) -C "$(build)/$($1_dir)" clean
endef
$(call map, define_module, $(modules-y))
2016-07-25 14:08:53 +00:00
# hack to force musl-cross to be built before musl
#$(build)/$(musl_dir)/.configured: $(build)/$(musl-cross_dir)/../../crossgcc/x86_64-linux-musl/bin/x86_64-musl-linux-gcc
#
# Install a file into the initrd, if it changed from
# the destination file.
#
define install =
@-mkdir -p "$(dir $2)"
$(call do,INSTALL,$2,cp -a --remove-destination "$1" "$2")
endef
#
# Files that should be copied into the initrd
# THis should probably be done in a more scalable manner
#
define initrd_bin_add =
$(initrd_bin_dir)/$(notdir $1): $1
$(call do,INSTALL-BIN,$$(<:$(pwd)/%=%),cp -a --remove-destination "$$<" "$$@")
@$(CROSS)strip --preserve-dates "$$@" 2>&-; true
initrd_bins += $(initrd_bin_dir)/$(notdir $1)
endef
define initrd_lib_add =
$(initrd_lib_dir)/$(notdir $1): $1
$(call do,INSTALL-LIB,$(1:$(pwd)/%=%),\
$(CROSS)strip --preserve-dates -o "$$@" "$$<")
initrd_libs += $(initrd_lib_dir)/$(notdir $1)
endef
# Only some modules have binaries that we install
# Shouldn't this be specified in the module file?
#bin_modules-$(CONFIG_MUSL) += musl-cross
bin_modules-$(CONFIG_KEXEC) += kexec
bin_modules-$(CONFIG_TPMTOTP) += tpmtotp
bin_modules-$(CONFIG_PCIUTILS) += pciutils
bin_modules-$(CONFIG_FLASHROM) += flashrom
bin_modules-$(CONFIG_CRYPTSETUP) += cryptsetup
bin_modules-$(CONFIG_CRYPTSETUP2) += cryptsetup2
bin_modules-$(CONFIG_GPG) += gpg
bin_modules-$(CONFIG_GPG2) += gpg2
2018-09-19 11:21:02 +00:00
bin_modules-$(CONFIG_PINENTRY) += pinentry
bin_modules-$(CONFIG_LVM2) += lvm2
bin_modules-$(CONFIG_DROPBEAR) += dropbear
bin_modules-$(CONFIG_FLASHTOOLS) += flashtools
bin_modules-$(CONFIG_NEWT) += newt
bin_modules-$(CONFIG_CAIRO) += cairo
bin_modules-$(CONFIG_FBWHIPTAIL) += fbwhiptail
bin_modules-$(CONFIG_HOTPKEY) += hotp-verification
2019-07-30 13:36:57 +00:00
bin_modules-$(CONFIG_MSRTOOLS) += msrtools
bin_modules-$(CONFIG_NKSTORECLI) += nkstorecli
bin_modules-$(CONFIG_UTIL_LINUX) += util-linux
Addition of qemu-(fb)whiptail-tpm2(-hotp) boards -coreboot support of TPM v2.0 (shared config for TPM2 support across all 4 previous variations) -swtpm set to be launched under TPM v2.0 mode under board config -Documentation file under each board.md softlinks to qemu-coreboot-fbwhiptail-tpm1.md (which has been generalized) This is skeleton for TPM v2 integration under Heads ------------- WiP TODO: - libcurl cannot be built as a tpm2-tools dependency as of now not sure why. curl currently needs to be added in board config to be built - Note: tpm-reset (master and here) needs some review, no handle of no tpm use case. Caller is responsible to not call it otherwise does nothing - init tries to bind fd and fails currently - Note: Check if whiptail is different of fbwhiptail in clearing screen. As of now every clear seems to be removed, still whiptail clears previous console output - When no OS' /boot can be mounted, do not try to TPM reset (will fail) - seal-hotpkey is not working properly - setting disk unlock key asks for TPM ownership passphrase (sealing in NV requires ownership, but text is misleading user as if reowning TPM) - We should cache input, feed tpm behind the scene and wipe passphrase and state clearly that this is TPM disk unlock kye passphrase. - primary key from TPM2 is invalid most of the time from kexec-select-boot and verifying global hashes but is setuped correctly at disk unlock key setup - would be nice to take advantage of bash function tracing to understand where we are for debugging purposes, code takes ash in consideration only - tpmr says it implements nv calls but actually doesn't. Removing those falsely wrapped functions would help. - Implementing them would be better - REVIEW TODOS IN CODE - READD CIRCLECI CONFIG Current state: - TPM unseal works without disk unlock key and generates TOTP properly (was missing die condition at unseal to not produce always good TOTP even if invalid) - TPM disk encryption key fails. Hypothesis is that sealing with USB drivers loaded and measures in inconsistent with sealed with/without. - TPM disk unsealing happens without USB modules being loaded in non-HOTP setup. This fails. - Current tests are with fbwhiptail (no clear called so having traces on command line of what happens) - Testing with HOTP implementation for sealing/unsealing since that forces USB module loads on each boot to remove this from failing possibilities
2022-08-25 18:43:31 +00:00
bin_modules-$(CONFIG_OPENSSL) += openssl
bin_modules-$(CONFIG_TPM2_TOOLS) += tpm2-tools
bin_modules-$(CONFIG_BASH) += bash
bin_modules-$(CONFIG_POWERPC_UTILS) += powerpc-utils
Introduce io386 to heads and use it to finalize chipset at runtime On some newer platforms of intel (confirmed on nehalem, sandy/ivy bridge), coreboot after commit [2ac149d294af795710eb4bb20f093e9920604abd](https://review.coreboot.org/cgit/coreboot.git/commit/?id=2ac149d294af795710eb4bb20f093e9920604abd) registers an SMI to lockdown some registers on the chipset, as well as access to the SPI flash, optionally. The SMI will always be triggered by coreboot during S3 resume, but can be triggered by either coreboot or the payload during normal boot path. Enabling lockdown access to SPI flash will effectly write-protect it, but there is no runtime option for coreboot to control it, so letting coreboot to trigger such SMI will leave the owner of the machine lost any possibility to program the SPI flash with its own OS, and becomes a nightmare if the machine is uneasy to disassemble, so a scheme could be implement, in which the SMI to lockdown chipset and SPI flash is left for a payload to trigger, and temporarily disabling such triggering in order to program the SPI flash needs authentication. I have implemented a passcode-protected runtime-disableable lockdown with grub, described [here](https://github.com/hardenedlinux/Debian-GNU-Linux-Profiles/blob/master/docs/hardened_boot/grub-for-coreboot.md#update-for-coreboot-after-commit-2ac149d294af795710eb4bb20f093e9920604abd). In order to implement a similar scheme for Heads, I wrote [io386](https://github.com/hardenedlinux/io386). With this commit, io386 will be called before entering boot routine to trigger the SMI to finalize the chipset and write protect the SPI flash at the same time. Entering recovery shell will leave the flash writable. (The authentication routine implemented in previous revisions has been split as an independent commit.) Originally proposed under PR#326
2018-01-17 08:16:18 +00:00
bin_modules-$(CONFIG_IO386) += io386
bin_modules-$(CONFIG_IOPORT) += ioport
bin_modules-$(CONFIG_ZSTD) += zstd
$(foreach m, $(bin_modules-y), \
$(call map,initrd_bin_add,$(call bins,$m)) \
)
# Install the libraries for every module that we have built
$(foreach m, $(modules-y), \
$(call map,initrd_lib_add,$(call libs,$m)) \
)
#
# hack to build cbmem from coreboot
# this must be built *AFTER* musl, but since coreboot depends on other things
# that depend on musl it should be ok.
#
COREBOOT_UTIL_DIR=$(build)/$(coreboot_base_dir)/util
ifeq ($(CONFIG_COREBOOT),y)
$(eval $(call initrd_bin_add,$(COREBOOT_UTIL_DIR)/cbmem/cbmem))
2018-03-08 09:32:23 +00:00
#$(eval $(call initrd_bin_add,$(COREBOOT_UTIL_DIR)/superiotool/superiotool))
#$(eval $(call initrd_bin_add,$(COREBOOT_UTIL_DIR)/inteltool/inteltool))
endif
$(COREBOOT_UTIL_DIR)/cbmem/cbmem \
$(COREBOOT_UTIL_DIR)/superiotool/superiotool \
$(COREBOOT_UTIL_DIR)/inteltool/inteltool \
: $(build)/$(coreboot_base_dir)/.canary musl-cross
+$(call do,MAKE,$(notdir $@),\
$(MAKE) -C "$(dir $@)" $(CROSS_TOOLS) \
)
# superio depends on zlib and pciutils
$(COREBOOT_UTIL_DIR)/superiotool/superiotool: \
$(build)/$(zlib_dir)/.build \
$(build)/$(pciutils_dir)/.build \
#
# initrd image creation
#
# The initrd is constructed from various bits and pieces
# The cpio-clean program is used ensure that the files
# always have the same timestamp and appear in the same order.
#
# The blobs/dev.cpio is also included in the Linux kernel
# and has a reproducible version of /dev/console.
#
# The xz parameters are copied from the Linux kernel build scripts.
# Without them the kernel will not decompress the initrd.
#
# The padding is to ensure that if anyone wants to cat another
# file onto the initrd then the kernel will be able to find it.
#
initrd-y += $(pwd)/blobs/dev.cpio
initrd-y += $(build)/$(initrd_dir)/modules.cpio
initrd-y += $(build)/$(initrd_dir)/tools.cpio
initrd-y += $(build)/$(initrd_dir)/board.cpio
initrd-$(CONFIG_HEADS) += $(build)/$(initrd_dir)/heads.cpio
#$(build)/$(initrd_dir)/.build: $(build)/$(initrd_dir)/initrd.cpio.xz
$(build)/$(initrd_dir)/initrd.cpio.xz: $(initrd-y)
$(call do,CPIO-XZ ,$@,\
$(pwd)/bin/cpio-clean \
$^ \
| xz \
--check=crc32 \
--lzma2=dict=1MiB \
-9 \
| dd bs=512 conv=sync status=none > "$@.tmp" \
)
@if ! cmp --quiet "$@.tmp" "$@" ; then \
mv "$@.tmp" "$@" ; \
else \
echo "$(DATE) UNCHANGED $(@:$(pwd)/%=%)" ; \
rm "$@.tmp" ; \
fi
2018-09-18 17:07:40 +00:00
@sha256sum "$(@:$(pwd)/%=%)" | tee -a "$(HASHES)"
@stat -c "%8s:%n" "$(@:$(pwd)/%=%)" | tee -a "$(SIZES)"
#
# At the moment PowerPC can only load initrd bundled with the kernel.
#
bundle-$(CONFIG_LINUX_BUNDLED) += $(board_build)/$(LINUX_IMAGE_FILE).bundled
all: $(bundle-y)
# The board.cpio is built from the board's initrd/ directory. It contains
# board-specific support scripts.
ifeq ($(wildcard $(pwd)/boards/$(BOARD)/initrd),)
$(build)/$(initrd_dir)/board.cpio:
cpio -H newc -o </dev/null >"$@"
else
$(build)/$(initrd_dir)/board.cpio: FORCE
$(call do-cpio,$@,$(pwd)/boards/$(BOARD)/initrd)
endif
#
# The heads.cpio is built from the initrd directory in the
# Heads tree.
#
$(build)/$(initrd_dir)/heads.cpio: FORCE
$(call do-cpio,$@,$(pwd)/initrd)
#
# The tools initrd is made from all of the things that we've
# created during the submodule build.
#
$(build)/$(initrd_dir)/tools.cpio: \
$(initrd_bins) \
$(initrd_libs) \
$(initrd_tmp_dir)/etc/config \
$(call do-cpio,$@,$(initrd_tmp_dir))
@$(RM) -rf "$(initrd_tmp_dir)"
$(initrd_tmp_dir)/etc/config: FORCE
@mkdir -p $(dir $@)
$(call do,INSTALL,$(CONFIG), \
export \
| grep ' CONFIG_' \
| sed -e 's/^declare -x /export /' \
-e 's/\\\"//g' \
> $@ \
)
$(call do,HASH,$(GIT_HASH) $(GIT_STATUS) $(BOARD), \
echo export GIT_HASH=\'$(GIT_HASH)\' \
>> $@ ; \
echo export GIT_STATUS=$(GIT_STATUS) \
>> $@ ; \
echo export CONFIG_BOARD=$(BOARD) \
>> $@ ; \
echo export CONFIG_BRAND_NAME=$(BRAND_NAME) \
>> $@ ; \
)
# Ensure that the initrd depends on all of the modules that produce
# binaries for it
$(build)/$(initrd_dir)/tools.cpio: $(foreach d,$(bin_modules-y),$(build)/$($d_dir)/.build)
# List of all modules, excluding the slow to-build modules
modules-slow := musl musl-cross kernel_headers
module_dirs := $(foreach m,$(filter-out $(modules-slow),$(modules-y)),$($m_dir))
echo_modules:
echo $(module_dirs)
modules.clean:
for dir in $(module_dirs) \
; do \
$(MAKE) -C "build/${CONFIG_TARGET_ARCH}/$$dir" clean ; \
rm -f "build/${CONFIG_TARGET_ARCH}/$$dir/.configured" ; \
done
# Inject a GPG key into the image - this is most useful when testing in qemu,
# since we can't reflash the firmware in qemu to update the keychain. Instead,
# inject the public key ahead of time. Specify the location of the key with
# PUBKEY_ASC.
inject_gpg: $(board_build)/$(CB_OUTPUT_FILE_GPG_INJ)
$(board_build)/$(CB_OUTPUT_BASENAME)-gpg-injected.rom: $(board_build)/$(CB_OUTPUT_FILE)
cp "$(board_build)/$(CB_OUTPUT_FILE)" \
"$(board_build)/$(CB_OUTPUT_FILE_GPG_INJ)"
./bin/inject_gpg_key.sh --cbfstool "$(build)/$(coreboot_dir)/cbfstool" \
"$(board_build)/$(CB_OUTPUT_FILE_GPG_INJ)" "$(PUBKEY_ASC)"
real.clean:
for dir in \
$(module_dirs) \
$(kernel_headers) \
; do \
if [ ! -z "$$dir" ]; then \
rm -rf "build/${CONFIG_TARGET_ARCH}/$$dir"; \
fi; \
done
cd install && rm -rf -- *