go-attestation/attest/eventlog.go
Eric Chiang f0e8d0fe7c attest: fix another unbounded memory allocation
@brandonweeks detected another case of the "make([]T, untrustedValue)"
pattern, which would allow an attacker to cause the parser to allocate
an unbounded amount of memory.

Fix this by reading one algorithm at a time instead of pre-allocating a
slice of algorithms.
2019-10-09 08:39:15 -07:00

567 lines
16 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2019 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
package attest
import (
"bytes"
"crypto"
"crypto/rsa"
"crypto/sha1"
"encoding/binary"
"fmt"
"io"
"sort"
// Ensure hashes are available.
_ "crypto/sha256"
"github.com/google/go-tpm/tpm2"
"github.com/google/go-tpm/tpmutil"
)
// ReplayError describes the parsed events that failed to verify against
// a particular PCR.
type ReplayError struct {
Events []Event
invalidPCRs []int
}
// Error returns a human-friendly description of replay failures.
func (e ReplayError) Error() string {
return fmt.Sprintf("event log failed to verify: the following registers failed to replay: %v", e.invalidPCRs)
}
// TPM algorithms. See the TPM 2.0 specification section 6.3.
//
// https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf#page=42
const (
algSHA1 uint16 = 0x0004
algSHA256 uint16 = 0x000B
)
// EventType indicates what kind of data an event is reporting.
type EventType uint32
// Event is a single event from a TCG event log. This reports descrete items such
// as BIOs measurements or EFI states.
type Event struct {
// order of the event in the event log.
sequence int
// PCR index of the event.
Index int
// Type of the event.
Type EventType
// Data of the event. For certain kinds of events, this must match the event
// digest to be valid.
Data []byte
// Digest is the verified digest of the event data. While an event can have
// multiple for different hash values, this is the one that was matched to the
// PCR value.
Digest []byte
// TODO(ericchiang): Provide examples or links for which event types must
// match their data to their digest.
}
// EventLog is a parsed measurement log. This contains unverified data representing
// boot events that must be replayed against PCR values to determine authenticity.
type EventLog struct {
// Algs holds the set of algorithms that the event log uses.
Algs []HashAlg
rawEvents []rawEvent
}
// Verify replays the event log against a TPM's PCR values, returning the
// events which could be matched to a provided PCR value.
// An error is returned if the replayed digest for events with a given PCR
// index do not match any provided value for that PCR index.
func (e *EventLog) Verify(pcrs []PCR) ([]Event, error) {
events, err := replayEvents(e.rawEvents, pcrs)
if err != nil {
if _, isReplayErr := err.(ReplayError); isReplayErr {
return nil, err
}
return nil, fmt.Errorf("pcrs failed to replay: %v", err)
}
return events, nil
}
type rawAttestationData struct {
Version [4]byte // This MUST be 1.1.0.0
Fixed [4]byte // This SHALL always be the string QUOT
Digest [20]byte // PCR Composite Hash
Nonce [20]byte // Nonce Hash
}
var (
fixedQuote = [4]byte{'Q', 'U', 'O', 'T'}
)
type rawPCRComposite struct {
Size uint16 // always 3
PCRMask [3]byte
Values tpmutil.U32Bytes
}
func (a *AKPublic) validate12Quote(quote Quote, pcrs []PCR, nonce []byte) error {
pub, ok := a.Public.(*rsa.PublicKey)
if !ok {
return fmt.Errorf("unsupported public key type: %T", a.Public)
}
qHash := sha1.Sum(quote.Quote)
if err := rsa.VerifyPKCS1v15(pub, crypto.SHA1, qHash[:], quote.Signature); err != nil {
return fmt.Errorf("invalid quote signature: %v", err)
}
var att rawAttestationData
if _, err := tpmutil.Unpack(quote.Quote, &att); err != nil {
return fmt.Errorf("parsing quote: %v", err)
}
// TODO(ericchiang): validate Version field.
if att.Nonce != sha1.Sum(nonce) {
return fmt.Errorf("invalid nonce")
}
if att.Fixed != fixedQuote {
return fmt.Errorf("quote wasn't a QUOT object: %x", att.Fixed)
}
// See 5.4.1 Creating a PCR composite hash
sort.Slice(pcrs, func(i, j int) bool { return pcrs[i].Index < pcrs[j].Index })
var (
pcrMask [3]byte // bitmap indicating which PCRs are active
values []byte // appended values of all PCRs
)
for _, pcr := range pcrs {
if pcr.Index < 0 || pcr.Index >= 24 {
return fmt.Errorf("invalid PCR index: %d", pcr.Index)
}
pcrMask[pcr.Index/8] |= 1 << uint(pcr.Index%8)
values = append(values, pcr.Digest...)
}
composite, err := tpmutil.Pack(rawPCRComposite{3, pcrMask, values})
if err != nil {
return fmt.Errorf("marshaling PCRs: %v", err)
}
if att.Digest != sha1.Sum(composite) {
return fmt.Errorf("PCRs passed didn't match quote: %v", err)
}
return nil
}
func (a *AKPublic) validate20Quote(quote Quote, pcrs []PCR, nonce []byte) error {
sig, err := tpm2.DecodeSignature(bytes.NewBuffer(quote.Signature))
if err != nil {
return fmt.Errorf("parse quote signature: %v", err)
}
sigHash := a.Hash.New()
sigHash.Write(quote.Quote)
switch pub := a.Public.(type) {
case *rsa.PublicKey:
if sig.RSA == nil {
return fmt.Errorf("rsa public key provided for ec signature")
}
sigBytes := []byte(sig.RSA.Signature)
if err := rsa.VerifyPKCS1v15(pub, a.Hash, sigHash.Sum(nil), sigBytes); err != nil {
return fmt.Errorf("invalid quote signature: %v", err)
}
default:
// TODO(ericchiang): support ecdsa
return fmt.Errorf("unsupported public key type %T", pub)
}
att, err := tpm2.DecodeAttestationData(quote.Quote)
if err != nil {
return fmt.Errorf("parsing quote signature: %v", err)
}
if att.Type != tpm2.TagAttestQuote {
return fmt.Errorf("attestation isn't a quote, tag of type 0x%x", att.Type)
}
if !bytes.Equal([]byte(att.ExtraData), nonce) {
return fmt.Errorf("nonce didn't match: %v", err)
}
pcrByIndex := map[int][]byte{}
pcrDigestLength := HashAlg(att.AttestedQuoteInfo.PCRSelection.Hash).cryptoHash().Size()
for _, pcr := range pcrs {
// TODO(jsonp): Use pcr.DigestAlg once #116 is fixed.
if len(pcr.Digest) == pcrDigestLength {
pcrByIndex[pcr.Index] = pcr.Digest
}
}
n := len(att.AttestedQuoteInfo.PCRDigest)
hash, ok := hashBySize[n]
if !ok {
return fmt.Errorf("quote used unsupported hash algorithm length: %d", n)
}
h := hash.New()
for _, index := range att.AttestedQuoteInfo.PCRSelection.PCRs {
digest, ok := pcrByIndex[index]
if !ok {
return fmt.Errorf("quote was over PCR %d which wasn't provided", index)
}
h.Write(digest)
}
if !bytes.Equal(h.Sum(nil), att.AttestedQuoteInfo.PCRDigest) {
return fmt.Errorf("quote digest didn't match pcrs provided")
}
return nil
}
var hashBySize = map[int]crypto.Hash{
crypto.SHA1.Size(): crypto.SHA1,
crypto.SHA256.Size(): crypto.SHA256,
}
func extend(pcr, replay []byte, e rawEvent) (pcrDigest []byte, eventDigest []byte, err error) {
h, ok := hashBySize[len(pcr)]
if !ok {
return nil, nil, fmt.Errorf("pcr %d was not a known hash size: %d", e.index, len(pcr))
}
for _, digest := range e.digests {
if len(digest) != len(pcr) {
continue
}
hash := h.New()
if len(replay) != 0 {
hash.Write(replay)
} else {
b := make([]byte, h.Size())
hash.Write(b)
}
hash.Write(digest)
return hash.Sum(nil), digest, nil
}
return nil, nil, fmt.Errorf("no event digest matches pcr length: %d", len(pcr))
}
// replayPCR replays the event log for a specific PCR, using pcr and
// event digests with the algorithm in pcr. An error is returned if the
// replayed values do not match the final PCR digest, or any event tagged
// with that PCR does not posess an event digest with the specified algorithm.
func replayPCR(rawEvents []rawEvent, pcr PCR) ([]Event, bool) {
var (
replay []byte
outEvents []Event
)
for _, e := range rawEvents {
if e.index != pcr.Index {
continue
}
replayValue, digest, err := extend(pcr.Digest, replay, e)
if err != nil {
return nil, false
}
replay = replayValue
outEvents = append(outEvents, Event{sequence: e.sequence, Data: e.data, Digest: digest, Index: pcr.Index, Type: e.typ})
}
if len(outEvents) > 0 && !bytes.Equal(replay, pcr.Digest) {
return nil, false
}
return outEvents, true
}
type pcrReplayResult struct {
events []Event
successful bool
}
func replayEvents(rawEvents []rawEvent, pcrs []PCR) ([]Event, error) {
var (
invalidReplays []int
verifiedEvents []Event
allPCRReplays = map[int][]pcrReplayResult{}
)
// Replay the event log for every PCR and digest algorithm combination.
for _, pcr := range pcrs {
events, ok := replayPCR(rawEvents, pcr)
allPCRReplays[pcr.Index] = append(allPCRReplays[pcr.Index], pcrReplayResult{events, ok})
}
// Record PCR indices which do not have any successful replay. Record the
// events for a successful replay.
pcrLoop:
for i, replaysForPCR := range allPCRReplays {
for _, replay := range replaysForPCR {
if replay.successful {
// We consider the PCR verified at this stage: The replay of values with
// one digest algorithm matched a provided value.
// As such, we save the PCR's events, and proceed to the next PCR.
verifiedEvents = append(verifiedEvents, replay.events...)
continue pcrLoop
}
}
invalidReplays = append(invalidReplays, i)
}
if len(invalidReplays) > 0 {
events := make([]Event, 0, len(rawEvents))
for _, e := range rawEvents {
events = append(events, Event{e.sequence, e.index, e.typ, e.data, nil})
}
return nil, ReplayError{
Events: events,
invalidPCRs: invalidReplays,
}
}
sort.Slice(verifiedEvents, func(i int, j int) bool {
return verifiedEvents[i].sequence < verifiedEvents[j].sequence
})
return verifiedEvents, nil
}
// EV_NO_ACTION is a special event type that indicates information to the parser
// instead of holding a measurement. For TPM 2.0, this event type is used to signal
// switching from SHA1 format to a variable length digest.
//
// https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientSpecPlat_TPM_2p0_1p04_pub.pdf#page=110
const eventTypeNoAction = 0x03
// ParseEventLog parses an unverified measurement log.
func ParseEventLog(measurementLog []byte) (*EventLog, error) {
r := bytes.NewBuffer(measurementLog)
parseFn := parseRawEvent
var el EventLog
e, err := parseFn(r)
if err != nil {
return nil, fmt.Errorf("parse first event: %v", err)
}
if e.typ == eventTypeNoAction {
specID, err := parseSpecIDEvent(e.data)
if err != nil {
return nil, fmt.Errorf("failed to parse spec ID event: %v", err)
}
for _, alg := range specID.algs {
switch tpm2.Algorithm(alg) {
case tpm2.AlgSHA1:
el.Algs = append(el.Algs, HashSHA1)
case tpm2.AlgSHA256:
el.Algs = append(el.Algs, HashSHA256)
}
}
if len(el.Algs) == 0 {
return nil, fmt.Errorf("measurement log didn't use sha1 or sha256 digests")
}
// Switch to parsing crypto agile events. Don't include this in the
// replayed events since it intentionally doesn't extend the PCRs.
//
// Note that this doesn't actually guarentee that events have SHA256
// digests.
parseFn = parseRawEvent2
} else {
el.Algs = []HashAlg{HashSHA1}
el.rawEvents = append(el.rawEvents, e)
}
sequence := 1
for r.Len() != 0 {
e, err := parseFn(r)
if err != nil {
return nil, err
}
e.sequence = sequence
sequence++
el.rawEvents = append(el.rawEvents, e)
}
return &el, nil
}
type specIDEvent struct {
algs []uint16
}
type specAlgSize struct {
ID uint16
Size uint16
}
// Expected values for various Spec ID Event fields.
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=19
var wantSignature = [16]byte{0x53, 0x70,
0x65, 0x63, 0x20, 0x49,
0x44, 0x20, 0x45, 0x76,
0x65, 0x6e, 0x74, 0x30,
0x33, 0x00} // "Spec ID Event03\0"
const (
wantMajor = 2
wantMinor = 0
wantErrata = 0
)
// parseSpecIDEvent parses a TCG_EfiSpecIDEventStruct structure from the reader.
//
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=18
func parseSpecIDEvent(b []byte) (*specIDEvent, error) {
r := bytes.NewReader(b)
var header struct {
Signature [16]byte
PlatformClass uint32
VersionMinor uint8
VersionMajor uint8
Errata uint8
UintnSize uint8
NumAlgs uint32
}
if err := binary.Read(r, binary.LittleEndian, &header); err != nil {
return nil, fmt.Errorf("reading event header: %v", err)
}
if header.Signature != wantSignature {
return nil, fmt.Errorf("invalid spec id signature: %x", header.Signature)
}
if header.VersionMajor != wantMajor {
return nil, fmt.Errorf("invalid spec major version, got %02x, wanted %02x",
header.VersionMajor, wantMajor)
}
if header.VersionMinor != wantMinor {
return nil, fmt.Errorf("invalid spec minor version, got %02x, wanted %02x",
header.VersionMajor, wantMinor)
}
// TODO(ericchiang): Check errata? Or do we expect that to change in ways
// we're okay with?
specAlg := specAlgSize{}
e := specIDEvent{}
for i := 0; i < int(header.NumAlgs); i++ {
if err := binary.Read(r, binary.LittleEndian, &specAlg); err != nil {
return nil, fmt.Errorf("reading algorithm: %v", err)
}
e.algs = append(e.algs, specAlg.ID)
}
var vendorInfoSize uint8
if err := binary.Read(r, binary.LittleEndian, &vendorInfoSize); err != nil {
return nil, fmt.Errorf("reading vender info size: %v", err)
}
if r.Len() != int(vendorInfoSize) {
return nil, fmt.Errorf("reading vendor info, expected %d remaining bytes, got %d", vendorInfoSize, r.Len())
}
return &e, nil
}
type rawEvent struct {
sequence int
index int
typ EventType
data []byte
digests [][]byte
}
// TPM 1.2 event log format. See "5.1 SHA1 Event Log Entry Format"
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=15
type rawEventHeader struct {
PCRIndex uint32
Type uint32
Digest [20]byte
EventSize uint32
}
type eventSizeErr struct {
eventSize uint32
logSize int
}
func (e *eventSizeErr) Error() string {
return fmt.Sprintf("event data size (%d bytes) is greater than remaining measurement log (%d bytes)", e.eventSize, e.logSize)
}
func parseRawEvent(r *bytes.Buffer) (event rawEvent, err error) {
var h rawEventHeader
if err = binary.Read(r, binary.LittleEndian, &h); err != nil {
return event, err
}
if h.EventSize > uint32(r.Len()) {
return event, &eventSizeErr{h.EventSize, r.Len()}
}
data := make([]byte, int(h.EventSize))
if _, err := io.ReadFull(r, data); err != nil {
return event, err
}
return rawEvent{
typ: EventType(h.Type),
data: data,
index: int(h.PCRIndex),
digests: [][]byte{h.Digest[:]},
}, nil
}
// TPM 2.0 event log format. See "5.2 Crypto Agile Log Entry Format"
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=15
type rawEvent2Header struct {
PCRIndex uint32
Type uint32
}
func parseRawEvent2(r *bytes.Buffer) (event rawEvent, err error) {
var h rawEvent2Header
if err = binary.Read(r, binary.LittleEndian, &h); err != nil {
return event, err
}
event.typ = EventType(h.Type)
event.index = int(h.PCRIndex)
// parse the event digests
var numDigests uint32
if err := binary.Read(r, binary.LittleEndian, &numDigests); err != nil {
return event, err
}
for i := 0; i < int(numDigests); i++ {
var algID uint16
if err := binary.Read(r, binary.LittleEndian, &algID); err != nil {
return event, err
}
var digest []byte
switch algID {
case algSHA1:
digest = make([]byte, crypto.SHA1.Size())
case algSHA256:
digest = make([]byte, crypto.SHA256.Size())
default:
// ignore signatures that aren't SHA1 or SHA256
continue
}
if _, err := io.ReadFull(r, digest); err != nil {
return event, err
}
event.digests = append(event.digests, digest)
}
// parse event data
var eventSize uint32
if err = binary.Read(r, binary.LittleEndian, &eventSize); err != nil {
return event, err
}
if eventSize > uint32(r.Len()) {
return event, &eventSizeErr{eventSize, r.Len()}
}
event.data = make([]byte, int(eventSize))
if _, err := io.ReadFull(r, event.data); err != nil {
return event, err
}
return event, err
}