mirror of
https://github.com/google/go-attestation.git
synced 2024-12-20 21:43:16 +00:00
f0e8d0fe7c
@brandonweeks detected another case of the "make([]T, untrustedValue)" pattern, which would allow an attacker to cause the parser to allocate an unbounded amount of memory. Fix this by reading one algorithm at a time instead of pre-allocating a slice of algorithms.
567 lines
16 KiB
Go
567 lines
16 KiB
Go
// Copyright 2019 Google Inc.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
||
// use this file except in compliance with the License. You may obtain a copy of
|
||
// the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
||
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
||
// License for the specific language governing permissions and limitations under
|
||
// the License.
|
||
|
||
package attest
|
||
|
||
import (
|
||
"bytes"
|
||
"crypto"
|
||
"crypto/rsa"
|
||
"crypto/sha1"
|
||
"encoding/binary"
|
||
"fmt"
|
||
"io"
|
||
"sort"
|
||
|
||
// Ensure hashes are available.
|
||
_ "crypto/sha256"
|
||
|
||
"github.com/google/go-tpm/tpm2"
|
||
"github.com/google/go-tpm/tpmutil"
|
||
)
|
||
|
||
// ReplayError describes the parsed events that failed to verify against
|
||
// a particular PCR.
|
||
type ReplayError struct {
|
||
Events []Event
|
||
invalidPCRs []int
|
||
}
|
||
|
||
// Error returns a human-friendly description of replay failures.
|
||
func (e ReplayError) Error() string {
|
||
return fmt.Sprintf("event log failed to verify: the following registers failed to replay: %v", e.invalidPCRs)
|
||
}
|
||
|
||
// TPM algorithms. See the TPM 2.0 specification section 6.3.
|
||
//
|
||
// https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf#page=42
|
||
const (
|
||
algSHA1 uint16 = 0x0004
|
||
algSHA256 uint16 = 0x000B
|
||
)
|
||
|
||
// EventType indicates what kind of data an event is reporting.
|
||
type EventType uint32
|
||
|
||
// Event is a single event from a TCG event log. This reports descrete items such
|
||
// as BIOs measurements or EFI states.
|
||
type Event struct {
|
||
// order of the event in the event log.
|
||
sequence int
|
||
|
||
// PCR index of the event.
|
||
Index int
|
||
// Type of the event.
|
||
Type EventType
|
||
|
||
// Data of the event. For certain kinds of events, this must match the event
|
||
// digest to be valid.
|
||
Data []byte
|
||
// Digest is the verified digest of the event data. While an event can have
|
||
// multiple for different hash values, this is the one that was matched to the
|
||
// PCR value.
|
||
Digest []byte
|
||
|
||
// TODO(ericchiang): Provide examples or links for which event types must
|
||
// match their data to their digest.
|
||
}
|
||
|
||
// EventLog is a parsed measurement log. This contains unverified data representing
|
||
// boot events that must be replayed against PCR values to determine authenticity.
|
||
type EventLog struct {
|
||
// Algs holds the set of algorithms that the event log uses.
|
||
Algs []HashAlg
|
||
|
||
rawEvents []rawEvent
|
||
}
|
||
|
||
// Verify replays the event log against a TPM's PCR values, returning the
|
||
// events which could be matched to a provided PCR value.
|
||
// An error is returned if the replayed digest for events with a given PCR
|
||
// index do not match any provided value for that PCR index.
|
||
func (e *EventLog) Verify(pcrs []PCR) ([]Event, error) {
|
||
events, err := replayEvents(e.rawEvents, pcrs)
|
||
if err != nil {
|
||
if _, isReplayErr := err.(ReplayError); isReplayErr {
|
||
return nil, err
|
||
}
|
||
return nil, fmt.Errorf("pcrs failed to replay: %v", err)
|
||
}
|
||
return events, nil
|
||
}
|
||
|
||
type rawAttestationData struct {
|
||
Version [4]byte // This MUST be 1.1.0.0
|
||
Fixed [4]byte // This SHALL always be the string ‘QUOT’
|
||
Digest [20]byte // PCR Composite Hash
|
||
Nonce [20]byte // Nonce Hash
|
||
}
|
||
|
||
var (
|
||
fixedQuote = [4]byte{'Q', 'U', 'O', 'T'}
|
||
)
|
||
|
||
type rawPCRComposite struct {
|
||
Size uint16 // always 3
|
||
PCRMask [3]byte
|
||
Values tpmutil.U32Bytes
|
||
}
|
||
|
||
func (a *AKPublic) validate12Quote(quote Quote, pcrs []PCR, nonce []byte) error {
|
||
pub, ok := a.Public.(*rsa.PublicKey)
|
||
if !ok {
|
||
return fmt.Errorf("unsupported public key type: %T", a.Public)
|
||
}
|
||
qHash := sha1.Sum(quote.Quote)
|
||
if err := rsa.VerifyPKCS1v15(pub, crypto.SHA1, qHash[:], quote.Signature); err != nil {
|
||
return fmt.Errorf("invalid quote signature: %v", err)
|
||
}
|
||
|
||
var att rawAttestationData
|
||
if _, err := tpmutil.Unpack(quote.Quote, &att); err != nil {
|
||
return fmt.Errorf("parsing quote: %v", err)
|
||
}
|
||
// TODO(ericchiang): validate Version field.
|
||
if att.Nonce != sha1.Sum(nonce) {
|
||
return fmt.Errorf("invalid nonce")
|
||
}
|
||
if att.Fixed != fixedQuote {
|
||
return fmt.Errorf("quote wasn't a QUOT object: %x", att.Fixed)
|
||
}
|
||
|
||
// See 5.4.1 Creating a PCR composite hash
|
||
sort.Slice(pcrs, func(i, j int) bool { return pcrs[i].Index < pcrs[j].Index })
|
||
var (
|
||
pcrMask [3]byte // bitmap indicating which PCRs are active
|
||
values []byte // appended values of all PCRs
|
||
)
|
||
for _, pcr := range pcrs {
|
||
if pcr.Index < 0 || pcr.Index >= 24 {
|
||
return fmt.Errorf("invalid PCR index: %d", pcr.Index)
|
||
}
|
||
pcrMask[pcr.Index/8] |= 1 << uint(pcr.Index%8)
|
||
values = append(values, pcr.Digest...)
|
||
}
|
||
composite, err := tpmutil.Pack(rawPCRComposite{3, pcrMask, values})
|
||
if err != nil {
|
||
return fmt.Errorf("marshaling PCRs: %v", err)
|
||
}
|
||
if att.Digest != sha1.Sum(composite) {
|
||
return fmt.Errorf("PCRs passed didn't match quote: %v", err)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
func (a *AKPublic) validate20Quote(quote Quote, pcrs []PCR, nonce []byte) error {
|
||
sig, err := tpm2.DecodeSignature(bytes.NewBuffer(quote.Signature))
|
||
if err != nil {
|
||
return fmt.Errorf("parse quote signature: %v", err)
|
||
}
|
||
|
||
sigHash := a.Hash.New()
|
||
sigHash.Write(quote.Quote)
|
||
|
||
switch pub := a.Public.(type) {
|
||
case *rsa.PublicKey:
|
||
if sig.RSA == nil {
|
||
return fmt.Errorf("rsa public key provided for ec signature")
|
||
}
|
||
sigBytes := []byte(sig.RSA.Signature)
|
||
if err := rsa.VerifyPKCS1v15(pub, a.Hash, sigHash.Sum(nil), sigBytes); err != nil {
|
||
return fmt.Errorf("invalid quote signature: %v", err)
|
||
}
|
||
default:
|
||
// TODO(ericchiang): support ecdsa
|
||
return fmt.Errorf("unsupported public key type %T", pub)
|
||
}
|
||
|
||
att, err := tpm2.DecodeAttestationData(quote.Quote)
|
||
if err != nil {
|
||
return fmt.Errorf("parsing quote signature: %v", err)
|
||
}
|
||
if att.Type != tpm2.TagAttestQuote {
|
||
return fmt.Errorf("attestation isn't a quote, tag of type 0x%x", att.Type)
|
||
}
|
||
if !bytes.Equal([]byte(att.ExtraData), nonce) {
|
||
return fmt.Errorf("nonce didn't match: %v", err)
|
||
}
|
||
|
||
pcrByIndex := map[int][]byte{}
|
||
pcrDigestLength := HashAlg(att.AttestedQuoteInfo.PCRSelection.Hash).cryptoHash().Size()
|
||
for _, pcr := range pcrs {
|
||
// TODO(jsonp): Use pcr.DigestAlg once #116 is fixed.
|
||
if len(pcr.Digest) == pcrDigestLength {
|
||
pcrByIndex[pcr.Index] = pcr.Digest
|
||
}
|
||
}
|
||
|
||
n := len(att.AttestedQuoteInfo.PCRDigest)
|
||
hash, ok := hashBySize[n]
|
||
if !ok {
|
||
return fmt.Errorf("quote used unsupported hash algorithm length: %d", n)
|
||
}
|
||
|
||
h := hash.New()
|
||
for _, index := range att.AttestedQuoteInfo.PCRSelection.PCRs {
|
||
digest, ok := pcrByIndex[index]
|
||
if !ok {
|
||
return fmt.Errorf("quote was over PCR %d which wasn't provided", index)
|
||
}
|
||
h.Write(digest)
|
||
}
|
||
|
||
if !bytes.Equal(h.Sum(nil), att.AttestedQuoteInfo.PCRDigest) {
|
||
return fmt.Errorf("quote digest didn't match pcrs provided")
|
||
}
|
||
return nil
|
||
}
|
||
|
||
var hashBySize = map[int]crypto.Hash{
|
||
crypto.SHA1.Size(): crypto.SHA1,
|
||
crypto.SHA256.Size(): crypto.SHA256,
|
||
}
|
||
|
||
func extend(pcr, replay []byte, e rawEvent) (pcrDigest []byte, eventDigest []byte, err error) {
|
||
h, ok := hashBySize[len(pcr)]
|
||
if !ok {
|
||
return nil, nil, fmt.Errorf("pcr %d was not a known hash size: %d", e.index, len(pcr))
|
||
}
|
||
for _, digest := range e.digests {
|
||
if len(digest) != len(pcr) {
|
||
continue
|
||
}
|
||
hash := h.New()
|
||
if len(replay) != 0 {
|
||
hash.Write(replay)
|
||
} else {
|
||
b := make([]byte, h.Size())
|
||
hash.Write(b)
|
||
}
|
||
hash.Write(digest)
|
||
return hash.Sum(nil), digest, nil
|
||
}
|
||
return nil, nil, fmt.Errorf("no event digest matches pcr length: %d", len(pcr))
|
||
}
|
||
|
||
// replayPCR replays the event log for a specific PCR, using pcr and
|
||
// event digests with the algorithm in pcr. An error is returned if the
|
||
// replayed values do not match the final PCR digest, or any event tagged
|
||
// with that PCR does not posess an event digest with the specified algorithm.
|
||
func replayPCR(rawEvents []rawEvent, pcr PCR) ([]Event, bool) {
|
||
var (
|
||
replay []byte
|
||
outEvents []Event
|
||
)
|
||
|
||
for _, e := range rawEvents {
|
||
if e.index != pcr.Index {
|
||
continue
|
||
}
|
||
|
||
replayValue, digest, err := extend(pcr.Digest, replay, e)
|
||
if err != nil {
|
||
return nil, false
|
||
}
|
||
replay = replayValue
|
||
outEvents = append(outEvents, Event{sequence: e.sequence, Data: e.data, Digest: digest, Index: pcr.Index, Type: e.typ})
|
||
}
|
||
|
||
if len(outEvents) > 0 && !bytes.Equal(replay, pcr.Digest) {
|
||
return nil, false
|
||
}
|
||
return outEvents, true
|
||
}
|
||
|
||
type pcrReplayResult struct {
|
||
events []Event
|
||
successful bool
|
||
}
|
||
|
||
func replayEvents(rawEvents []rawEvent, pcrs []PCR) ([]Event, error) {
|
||
var (
|
||
invalidReplays []int
|
||
verifiedEvents []Event
|
||
allPCRReplays = map[int][]pcrReplayResult{}
|
||
)
|
||
|
||
// Replay the event log for every PCR and digest algorithm combination.
|
||
for _, pcr := range pcrs {
|
||
events, ok := replayPCR(rawEvents, pcr)
|
||
allPCRReplays[pcr.Index] = append(allPCRReplays[pcr.Index], pcrReplayResult{events, ok})
|
||
}
|
||
|
||
// Record PCR indices which do not have any successful replay. Record the
|
||
// events for a successful replay.
|
||
pcrLoop:
|
||
for i, replaysForPCR := range allPCRReplays {
|
||
for _, replay := range replaysForPCR {
|
||
if replay.successful {
|
||
// We consider the PCR verified at this stage: The replay of values with
|
||
// one digest algorithm matched a provided value.
|
||
// As such, we save the PCR's events, and proceed to the next PCR.
|
||
verifiedEvents = append(verifiedEvents, replay.events...)
|
||
continue pcrLoop
|
||
}
|
||
}
|
||
invalidReplays = append(invalidReplays, i)
|
||
}
|
||
|
||
if len(invalidReplays) > 0 {
|
||
events := make([]Event, 0, len(rawEvents))
|
||
for _, e := range rawEvents {
|
||
events = append(events, Event{e.sequence, e.index, e.typ, e.data, nil})
|
||
}
|
||
return nil, ReplayError{
|
||
Events: events,
|
||
invalidPCRs: invalidReplays,
|
||
}
|
||
}
|
||
|
||
sort.Slice(verifiedEvents, func(i int, j int) bool {
|
||
return verifiedEvents[i].sequence < verifiedEvents[j].sequence
|
||
})
|
||
return verifiedEvents, nil
|
||
}
|
||
|
||
// EV_NO_ACTION is a special event type that indicates information to the parser
|
||
// instead of holding a measurement. For TPM 2.0, this event type is used to signal
|
||
// switching from SHA1 format to a variable length digest.
|
||
//
|
||
// https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientSpecPlat_TPM_2p0_1p04_pub.pdf#page=110
|
||
const eventTypeNoAction = 0x03
|
||
|
||
// ParseEventLog parses an unverified measurement log.
|
||
func ParseEventLog(measurementLog []byte) (*EventLog, error) {
|
||
r := bytes.NewBuffer(measurementLog)
|
||
parseFn := parseRawEvent
|
||
var el EventLog
|
||
e, err := parseFn(r)
|
||
if err != nil {
|
||
return nil, fmt.Errorf("parse first event: %v", err)
|
||
}
|
||
if e.typ == eventTypeNoAction {
|
||
specID, err := parseSpecIDEvent(e.data)
|
||
if err != nil {
|
||
return nil, fmt.Errorf("failed to parse spec ID event: %v", err)
|
||
}
|
||
for _, alg := range specID.algs {
|
||
switch tpm2.Algorithm(alg) {
|
||
case tpm2.AlgSHA1:
|
||
el.Algs = append(el.Algs, HashSHA1)
|
||
case tpm2.AlgSHA256:
|
||
el.Algs = append(el.Algs, HashSHA256)
|
||
}
|
||
}
|
||
if len(el.Algs) == 0 {
|
||
return nil, fmt.Errorf("measurement log didn't use sha1 or sha256 digests")
|
||
}
|
||
// Switch to parsing crypto agile events. Don't include this in the
|
||
// replayed events since it intentionally doesn't extend the PCRs.
|
||
//
|
||
// Note that this doesn't actually guarentee that events have SHA256
|
||
// digests.
|
||
parseFn = parseRawEvent2
|
||
} else {
|
||
el.Algs = []HashAlg{HashSHA1}
|
||
el.rawEvents = append(el.rawEvents, e)
|
||
}
|
||
sequence := 1
|
||
for r.Len() != 0 {
|
||
e, err := parseFn(r)
|
||
if err != nil {
|
||
return nil, err
|
||
}
|
||
e.sequence = sequence
|
||
sequence++
|
||
el.rawEvents = append(el.rawEvents, e)
|
||
}
|
||
return &el, nil
|
||
}
|
||
|
||
type specIDEvent struct {
|
||
algs []uint16
|
||
}
|
||
|
||
type specAlgSize struct {
|
||
ID uint16
|
||
Size uint16
|
||
}
|
||
|
||
// Expected values for various Spec ID Event fields.
|
||
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=19
|
||
var wantSignature = [16]byte{0x53, 0x70,
|
||
0x65, 0x63, 0x20, 0x49,
|
||
0x44, 0x20, 0x45, 0x76,
|
||
0x65, 0x6e, 0x74, 0x30,
|
||
0x33, 0x00} // "Spec ID Event03\0"
|
||
|
||
const (
|
||
wantMajor = 2
|
||
wantMinor = 0
|
||
wantErrata = 0
|
||
)
|
||
|
||
// parseSpecIDEvent parses a TCG_EfiSpecIDEventStruct structure from the reader.
|
||
//
|
||
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=18
|
||
func parseSpecIDEvent(b []byte) (*specIDEvent, error) {
|
||
r := bytes.NewReader(b)
|
||
var header struct {
|
||
Signature [16]byte
|
||
PlatformClass uint32
|
||
VersionMinor uint8
|
||
VersionMajor uint8
|
||
Errata uint8
|
||
UintnSize uint8
|
||
NumAlgs uint32
|
||
}
|
||
if err := binary.Read(r, binary.LittleEndian, &header); err != nil {
|
||
return nil, fmt.Errorf("reading event header: %v", err)
|
||
}
|
||
if header.Signature != wantSignature {
|
||
return nil, fmt.Errorf("invalid spec id signature: %x", header.Signature)
|
||
}
|
||
if header.VersionMajor != wantMajor {
|
||
return nil, fmt.Errorf("invalid spec major version, got %02x, wanted %02x",
|
||
header.VersionMajor, wantMajor)
|
||
}
|
||
if header.VersionMinor != wantMinor {
|
||
return nil, fmt.Errorf("invalid spec minor version, got %02x, wanted %02x",
|
||
header.VersionMajor, wantMinor)
|
||
}
|
||
|
||
// TODO(ericchiang): Check errata? Or do we expect that to change in ways
|
||
// we're okay with?
|
||
|
||
specAlg := specAlgSize{}
|
||
e := specIDEvent{}
|
||
for i := 0; i < int(header.NumAlgs); i++ {
|
||
if err := binary.Read(r, binary.LittleEndian, &specAlg); err != nil {
|
||
return nil, fmt.Errorf("reading algorithm: %v", err)
|
||
}
|
||
e.algs = append(e.algs, specAlg.ID)
|
||
}
|
||
|
||
var vendorInfoSize uint8
|
||
if err := binary.Read(r, binary.LittleEndian, &vendorInfoSize); err != nil {
|
||
return nil, fmt.Errorf("reading vender info size: %v", err)
|
||
}
|
||
if r.Len() != int(vendorInfoSize) {
|
||
return nil, fmt.Errorf("reading vendor info, expected %d remaining bytes, got %d", vendorInfoSize, r.Len())
|
||
}
|
||
return &e, nil
|
||
}
|
||
|
||
type rawEvent struct {
|
||
sequence int
|
||
index int
|
||
typ EventType
|
||
data []byte
|
||
digests [][]byte
|
||
}
|
||
|
||
// TPM 1.2 event log format. See "5.1 SHA1 Event Log Entry Format"
|
||
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=15
|
||
type rawEventHeader struct {
|
||
PCRIndex uint32
|
||
Type uint32
|
||
Digest [20]byte
|
||
EventSize uint32
|
||
}
|
||
|
||
type eventSizeErr struct {
|
||
eventSize uint32
|
||
logSize int
|
||
}
|
||
|
||
func (e *eventSizeErr) Error() string {
|
||
return fmt.Sprintf("event data size (%d bytes) is greater than remaining measurement log (%d bytes)", e.eventSize, e.logSize)
|
||
}
|
||
|
||
func parseRawEvent(r *bytes.Buffer) (event rawEvent, err error) {
|
||
var h rawEventHeader
|
||
if err = binary.Read(r, binary.LittleEndian, &h); err != nil {
|
||
return event, err
|
||
}
|
||
if h.EventSize > uint32(r.Len()) {
|
||
return event, &eventSizeErr{h.EventSize, r.Len()}
|
||
}
|
||
data := make([]byte, int(h.EventSize))
|
||
if _, err := io.ReadFull(r, data); err != nil {
|
||
return event, err
|
||
}
|
||
return rawEvent{
|
||
typ: EventType(h.Type),
|
||
data: data,
|
||
index: int(h.PCRIndex),
|
||
digests: [][]byte{h.Digest[:]},
|
||
}, nil
|
||
}
|
||
|
||
// TPM 2.0 event log format. See "5.2 Crypto Agile Log Entry Format"
|
||
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=15
|
||
type rawEvent2Header struct {
|
||
PCRIndex uint32
|
||
Type uint32
|
||
}
|
||
|
||
func parseRawEvent2(r *bytes.Buffer) (event rawEvent, err error) {
|
||
var h rawEvent2Header
|
||
if err = binary.Read(r, binary.LittleEndian, &h); err != nil {
|
||
return event, err
|
||
}
|
||
event.typ = EventType(h.Type)
|
||
event.index = int(h.PCRIndex)
|
||
|
||
// parse the event digests
|
||
var numDigests uint32
|
||
if err := binary.Read(r, binary.LittleEndian, &numDigests); err != nil {
|
||
return event, err
|
||
}
|
||
for i := 0; i < int(numDigests); i++ {
|
||
var algID uint16
|
||
if err := binary.Read(r, binary.LittleEndian, &algID); err != nil {
|
||
return event, err
|
||
}
|
||
var digest []byte
|
||
switch algID {
|
||
case algSHA1:
|
||
digest = make([]byte, crypto.SHA1.Size())
|
||
case algSHA256:
|
||
digest = make([]byte, crypto.SHA256.Size())
|
||
default:
|
||
// ignore signatures that aren't SHA1 or SHA256
|
||
continue
|
||
}
|
||
if _, err := io.ReadFull(r, digest); err != nil {
|
||
return event, err
|
||
}
|
||
event.digests = append(event.digests, digest)
|
||
}
|
||
|
||
// parse event data
|
||
var eventSize uint32
|
||
if err = binary.Read(r, binary.LittleEndian, &eventSize); err != nil {
|
||
return event, err
|
||
}
|
||
if eventSize > uint32(r.Len()) {
|
||
return event, &eventSizeErr{eventSize, r.Len()}
|
||
}
|
||
event.data = make([]byte, int(eventSize))
|
||
if _, err := io.ReadFull(r, event.data); err != nil {
|
||
return event, err
|
||
}
|
||
return event, err
|
||
}
|