go-attestation/attest/internal/events.go
Alex Wu 0a3c6e82bf
Ignore SBAT events in ParseUEFIVariableAuthority (#222)
As part of the Boothole fixes, shim has introduced an
SBAT feature https://github.com/rhboot/shim/blob/main/SBAT.md.
SBAT configuration is configured to log to PCR7 using
EV_EFI_VARIABLE_AUTHORITY.
493bd940e5/mok.c (L228-L247)

This causes issue with ParseUEFIVariableAuthority, as
it asssumes that an event with type EV_EFI_VARIABLE_AUTHORITY
can be parsed as EFI_SIGNATURE_DATA, per section 3.3.4.8
of the TCG PC Client Platform Firmware Profile Specification.
2021-06-03 14:28:24 -07:00

542 lines
19 KiB
Go

package internal
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"unicode/utf16"
"github.com/google/certificate-transparency-go/asn1"
"github.com/google/certificate-transparency-go/x509"
)
const (
// maxNameLen is the maximum accepted byte length for a name field.
// This value should be larger than any reasonable value.
maxNameLen = 2048
// maxDataLen is the maximum size in bytes of a variable data field.
// This value should be larger than any reasonable value.
maxDataLen = 1024 * 1024 // 1 Megabyte.
)
// GUIDs representing the contents of an UEFI_SIGNATURE_LIST.
var (
hashSHA256SigGUID = efiGUID{0xc1c41626, 0x504c, 0x4092, [8]byte{0xac, 0xa9, 0x41, 0xf9, 0x36, 0x93, 0x43, 0x28}}
hashSHA1SigGUID = efiGUID{0x826ca512, 0xcf10, 0x4ac9, [8]byte{0xb1, 0x87, 0xbe, 0x01, 0x49, 0x66, 0x31, 0xbd}}
hashSHA224SigGUID = efiGUID{0x0b6e5233, 0xa65c, 0x44c9, [8]byte{0x94, 0x07, 0xd9, 0xab, 0x83, 0xbf, 0xc8, 0xbd}}
hashSHA384SigGUID = efiGUID{0xff3e5307, 0x9fd0, 0x48c9, [8]byte{0x85, 0xf1, 0x8a, 0xd5, 0x6c, 0x70, 0x1e, 0x01}}
hashSHA512SigGUID = efiGUID{0x093e0fae, 0xa6c4, 0x4f50, [8]byte{0x9f, 0x1b, 0xd4, 0x1e, 0x2b, 0x89, 0xc1, 0x9a}}
keyRSA2048SigGUID = efiGUID{0x3c5766e8, 0x269c, 0x4e34, [8]byte{0xaa, 0x14, 0xed, 0x77, 0x6e, 0x85, 0xb3, 0xb6}}
certRSA2048SHA256SigGUID = efiGUID{0xe2b36190, 0x879b, 0x4a3d, [8]byte{0xad, 0x8d, 0xf2, 0xe7, 0xbb, 0xa3, 0x27, 0x84}}
certRSA2048SHA1SigGUID = efiGUID{0x67f8444f, 0x8743, 0x48f1, [8]byte{0xa3, 0x28, 0x1e, 0xaa, 0xb8, 0x73, 0x60, 0x80}}
certX509SigGUID = efiGUID{0xa5c059a1, 0x94e4, 0x4aa7, [8]byte{0x87, 0xb5, 0xab, 0x15, 0x5c, 0x2b, 0xf0, 0x72}}
certHashSHA256SigGUID = efiGUID{0x3bd2a492, 0x96c0, 0x4079, [8]byte{0xb4, 0x20, 0xfc, 0xf9, 0x8e, 0xf1, 0x03, 0xed}}
certHashSHA384SigGUID = efiGUID{0x7076876e, 0x80c2, 0x4ee6, [8]byte{0xaa, 0xd2, 0x28, 0xb3, 0x49, 0xa6, 0x86, 0x5b}}
certHashSHA512SigGUID = efiGUID{0x446dbf63, 0x2502, 0x4cda, [8]byte{0xbc, 0xfa, 0x24, 0x65, 0xd2, 0xb0, 0xfe, 0x9d}}
)
var (
// https://github.com/rhboot/shim/blob/20e4d9486fcae54ee44d2323ae342ffe68c920e6/lib/guid.c#L36
// GUID used by the shim.
shimLockGUID = efiGUID{0x605dab50, 0xe046, 0x4300, [8]byte{0xab, 0xb6, 0x3d, 0xd8, 0x10, 0xdd, 0x8b, 0x23}}
// "SbatLevel" encoded as UCS-2.
shimSbatVarName = []uint16{0x53, 0x62, 0x61, 0x74, 0x4c, 0x65, 0x76, 0x65, 0x6c}
)
// EventType describes the type of event signalled in the event log.
type EventType uint32
// BIOS Events (TCG PC Client Specific Implementation Specification for Conventional BIOS 1.21)
const (
PrebootCert EventType = 0x00000000
PostCode EventType = 0x00000001
unused EventType = 0x00000002
NoAction EventType = 0x00000003
Separator EventType = 0x00000004
Action EventType = 0x00000005
EventTag EventType = 0x00000006
SCRTMContents EventType = 0x00000007
SCRTMVersion EventType = 0x00000008
CpuMicrocode EventType = 0x00000009
PlatformConfigFlags EventType = 0x0000000A
TableOfDevices EventType = 0x0000000B
CompactHash EventType = 0x0000000C
Ipl EventType = 0x0000000D
IplPartitionData EventType = 0x0000000E
NonhostCode EventType = 0x0000000F
NonhostConfig EventType = 0x00000010
NonhostInfo EventType = 0x00000011
OmitBootDeviceEvents EventType = 0x00000012
)
// EFI Events (TCG EFI Platform Specification Version 1.22)
const (
EFIEventBase EventType = 0x80000000
EFIVariableDriverConfig EventType = 0x80000001
EFIVariableBoot EventType = 0x80000002
EFIBootServicesApplication EventType = 0x80000003
EFIBootServicesDriver EventType = 0x80000004
EFIRuntimeServicesDriver EventType = 0x80000005
EFIGPTEvent EventType = 0x80000006
EFIAction EventType = 0x80000007
EFIPlatformFirmwareBlob EventType = 0x80000008
EFIHandoffTables EventType = 0x80000009
EFIHCRTMEvent EventType = 0x80000010
EFIVariableAuthority EventType = 0x800000e0
)
// EFIDeviceType describes the type of a device specified by a device path.
type EFIDeviceType uint8
// "Device Path Protocol" type values.
//
// Section 9.3.2 of the UEFI specification, accessible at:
// https://uefi.org/sites/default/files/resources/UEFI%20Spec%202_6.pdf
const (
HardwareDevice EFIDeviceType = 0x01
ACPIDevice EFIDeviceType = 0x02
MessagingDevice EFIDeviceType = 0x03
MediaDevice EFIDeviceType = 0x04
BBSDevice EFIDeviceType = 0x05
EndDeviceArrayMarker EFIDeviceType = 0x7f
)
// ErrSigMissingGUID is returned if an EFI_SIGNATURE_DATA structure was parsed
// successfully, however was missing the SignatureOwner GUID. This case is
// handled specially as a workaround for a bug relating to authority events.
var ErrSigMissingGUID = errors.New("signature data was missing owner GUID")
var eventTypeNames = map[EventType]string{
PrebootCert: "Preboot Cert",
PostCode: "POST Code",
unused: "Unused",
NoAction: "No Action",
Separator: "Separator",
Action: "Action",
EventTag: "Event Tag",
SCRTMContents: "S-CRTM Contents",
SCRTMVersion: "S-CRTM Version",
CpuMicrocode: "CPU Microcode",
PlatformConfigFlags: "Platform Config Flags",
TableOfDevices: "Table of Devices",
CompactHash: "Compact Hash",
Ipl: "IPL",
IplPartitionData: "IPL Partition Data",
NonhostCode: "Non-Host Code",
NonhostConfig: "Non-HostConfig",
NonhostInfo: "Non-Host Info",
OmitBootDeviceEvents: "Omit Boot Device Events",
EFIEventBase: "EFI Event Base",
EFIVariableDriverConfig: "EFI Variable Driver Config",
EFIVariableBoot: "EFI Variable Boot",
EFIBootServicesApplication: "EFI Boot Services Application",
EFIBootServicesDriver: "EFI Boot Services Driver",
EFIRuntimeServicesDriver: "EFI Runtime Services Driver",
EFIGPTEvent: "EFI GPT Event",
EFIAction: "EFI Action",
EFIPlatformFirmwareBlob: "EFI Platform Firmware Blob",
EFIVariableAuthority: "EFI Variable Authority",
EFIHandoffTables: "EFI Handoff Tables",
EFIHCRTMEvent: "EFI H-CRTM Event",
}
// TaggedEventData represents the TCG_PCClientTaggedEventStruct structure,
// as defined by 11.3.2.1 in the "TCG PC Client Specific Implementation
// Specification for Conventional BIOS", version 1.21.
type TaggedEventData struct {
ID uint32
Data []byte
}
// ParseTaggedEventData parses a TCG_PCClientTaggedEventStruct structure.
func ParseTaggedEventData(d []byte) (*TaggedEventData, error) {
var (
r = bytes.NewReader(d)
header struct {
ID uint32
DataLen uint32
}
)
if err := binary.Read(r, binary.LittleEndian, &header); err != nil {
return nil, fmt.Errorf("reading header: %w", err)
}
if int(header.DataLen) > len(d) {
return nil, fmt.Errorf("tagged event len (%d bytes) larger than data length (%d bytes)", header.DataLen, len(d))
}
out := TaggedEventData{
ID: header.ID,
Data: make([]byte, header.DataLen),
}
return &out, binary.Read(r, binary.LittleEndian, &out.Data)
}
func (e EventType) String() string {
if s, ok := eventTypeNames[e]; ok {
return s
}
return fmt.Sprintf("EventType(0x%x)", uint32(e))
}
// UntrustedParseEventType returns the event type indicated by
// the provided value.
func UntrustedParseEventType(et uint32) (EventType, error) {
// "The value associated with a UEFI specific platform event type MUST be in
// the range between 0x80000000 and 0x800000FF, inclusive."
if (et < 0x80000000 && et > 0x800000FF) || (et < 0x0 && et > 0x12) {
return EventType(0), fmt.Errorf("event type not between [0x0, 0x12] or [0x80000000, 0x800000FF]: got %#x", et)
}
if _, ok := eventTypeNames[EventType(et)]; !ok {
return EventType(0), fmt.Errorf("unknown event type %#x", et)
}
return EventType(et), nil
}
// efiGUID represents the EFI_GUID type.
// See section "2.3.1 Data Types" in the specification for more information.
// type efiGUID [16]byte
type efiGUID struct {
Data1 uint32
Data2 uint16
Data3 uint16
Data4 [8]byte
}
func (d efiGUID) String() string {
var u [8]byte
binary.BigEndian.PutUint32(u[:4], d.Data1)
binary.BigEndian.PutUint16(u[4:6], d.Data2)
binary.BigEndian.PutUint16(u[6:8], d.Data3)
return fmt.Sprintf("%x-%x-%x-%x-%x", u[:4], u[4:6], u[6:8], d.Data4[:2], d.Data4[2:])
}
// UEFIVariableDataHeader represents the leading fixed-size fields
// within UEFI_VARIABLE_DATA.
type UEFIVariableDataHeader struct {
VariableName efiGUID
UnicodeNameLength uint64 // uintN
VariableDataLength uint64 // uintN
}
// UEFIVariableData represents the UEFI_VARIABLE_DATA structure.
type UEFIVariableData struct {
Header UEFIVariableDataHeader
UnicodeName []uint16
VariableData []byte // []int8
}
// ParseUEFIVariableData parses the data section of an event structured as
// a UEFI variable.
//
// https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClient_Specific_Platform_Profile_for_TPM_2p0_1p04_PUBLIC.pdf#page=100
func ParseUEFIVariableData(r io.Reader) (ret UEFIVariableData, err error) {
err = binary.Read(r, binary.LittleEndian, &ret.Header)
if err != nil {
return
}
if ret.Header.UnicodeNameLength > maxNameLen {
return UEFIVariableData{}, fmt.Errorf("unicode name too long: %d > %d", ret.Header.UnicodeNameLength, maxNameLen)
}
ret.UnicodeName = make([]uint16, ret.Header.UnicodeNameLength)
for i := 0; uint64(i) < ret.Header.UnicodeNameLength; i++ {
err = binary.Read(r, binary.LittleEndian, &ret.UnicodeName[i])
if err != nil {
return
}
}
if ret.Header.VariableDataLength > maxDataLen {
return UEFIVariableData{}, fmt.Errorf("variable data too long: %d > %d", ret.Header.VariableDataLength, maxDataLen)
}
ret.VariableData = make([]byte, ret.Header.VariableDataLength)
_, err = io.ReadFull(r, ret.VariableData)
return
}
func (v *UEFIVariableData) VarName() string {
return string(utf16.Decode(v.UnicodeName))
}
func (v *UEFIVariableData) SignatureData() (certs []x509.Certificate, hashes [][]byte, err error) {
return parseEfiSignatureList(v.VariableData)
}
// UEFIVariableAuthority describes the contents of a UEFI variable authority
// event.
type UEFIVariableAuthority struct {
Certs []x509.Certificate
}
// ParseUEFIVariableAuthority parses the data section of an event structured as
// a UEFI variable authority.
//
// https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf#page=1789
func ParseUEFIVariableAuthority(v UEFIVariableData) (UEFIVariableAuthority, error) {
// Skip parsing new SBAT section logged by shim.
// See https://github.com/rhboot/shim/blob/main/SBAT.md for more.
if v.Header.VariableName == shimLockGUID && unicodeNameEquals(v, shimSbatVarName) {
//https://github.com/rhboot/shim/blob/20e4d9486fcae54ee44d2323ae342ffe68c920e6/include/sbat.h#L9-L12
return UEFIVariableAuthority{}, nil
}
certs, err := parseEfiSignature(v.VariableData)
return UEFIVariableAuthority{Certs: certs}, err
}
func unicodeNameEquals(v UEFIVariableData, comp []uint16) bool {
if len(v.UnicodeName) != len(comp) {
return false
}
for i, v := range v.UnicodeName {
if v != comp[i] {
return false
}
}
return true
}
// efiSignatureData represents the EFI_SIGNATURE_DATA type.
// See section "31.4.1 Signature Database" in the specification for more information.
type efiSignatureData struct {
SignatureOwner efiGUID
SignatureData []byte // []int8
}
// efiSignatureList represents the EFI_SIGNATURE_LIST type.
// See section "31.4.1 Signature Database" in the specification for more information.
type efiSignatureListHeader struct {
SignatureType efiGUID
SignatureListSize uint32
SignatureHeaderSize uint32
SignatureSize uint32
}
type efiSignatureList struct {
Header efiSignatureListHeader
SignatureData []byte
Signatures []byte
}
// parseEfiSignatureList parses a EFI_SIGNATURE_LIST structure.
// The structure and related GUIDs are defined at:
// https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf#page=1790
func parseEfiSignatureList(b []byte) ([]x509.Certificate, [][]byte, error) {
if len(b) < 28 {
// Being passed an empty signature list here appears to be valid
return nil, nil, nil
}
signatures := efiSignatureList{}
buf := bytes.NewReader(b)
certificates := []x509.Certificate{}
hashes := [][]byte{}
for buf.Len() > 0 {
err := binary.Read(buf, binary.LittleEndian, &signatures.Header)
if err != nil {
return nil, nil, err
}
if signatures.Header.SignatureHeaderSize > maxDataLen {
return nil, nil, fmt.Errorf("signature header too large: %d > %d", signatures.Header.SignatureHeaderSize, maxDataLen)
}
if signatures.Header.SignatureListSize > maxDataLen {
return nil, nil, fmt.Errorf("signature list too large: %d > %d", signatures.Header.SignatureListSize, maxDataLen)
}
signatureType := signatures.Header.SignatureType
switch signatureType {
case certX509SigGUID: // X509 certificate
for sigOffset := 0; uint32(sigOffset) < signatures.Header.SignatureListSize-28; {
signature := efiSignatureData{}
signature.SignatureData = make([]byte, signatures.Header.SignatureSize-16)
err := binary.Read(buf, binary.LittleEndian, &signature.SignatureOwner)
if err != nil {
return nil, nil, err
}
err = binary.Read(buf, binary.LittleEndian, &signature.SignatureData)
if err != nil {
return nil, nil, err
}
cert, err := x509.ParseCertificate(signature.SignatureData)
if err != nil {
return nil, nil, err
}
sigOffset += int(signatures.Header.SignatureSize)
certificates = append(certificates, *cert)
}
case hashSHA256SigGUID: // SHA256
for sigOffset := 0; uint32(sigOffset) < signatures.Header.SignatureListSize-28; {
signature := efiSignatureData{}
signature.SignatureData = make([]byte, signatures.Header.SignatureSize-16)
err := binary.Read(buf, binary.LittleEndian, &signature.SignatureOwner)
if err != nil {
return nil, nil, err
}
err = binary.Read(buf, binary.LittleEndian, &signature.SignatureData)
if err != nil {
return nil, nil, err
}
hashes = append(hashes, signature.SignatureData)
sigOffset += int(signatures.Header.SignatureSize)
}
case keyRSA2048SigGUID:
err = errors.New("unhandled RSA2048 key")
case certRSA2048SHA256SigGUID:
err = errors.New("unhandled RSA2048-SHA256 key")
case hashSHA1SigGUID:
err = errors.New("unhandled SHA1 hash")
case certRSA2048SHA1SigGUID:
err = errors.New("unhandled RSA2048-SHA1 key")
case hashSHA224SigGUID:
err = errors.New("unhandled SHA224 hash")
case hashSHA384SigGUID:
err = errors.New("unhandled SHA384 hash")
case hashSHA512SigGUID:
err = errors.New("unhandled SHA512 hash")
case certHashSHA256SigGUID:
err = errors.New("unhandled X509-SHA256 hash metadata")
case certHashSHA384SigGUID:
err = errors.New("unhandled X509-SHA384 hash metadata")
case certHashSHA512SigGUID:
err = errors.New("unhandled X509-SHA512 hash metadata")
default:
err = fmt.Errorf("unhandled signature type %s", signatureType)
}
if err != nil {
return nil, nil, err
}
}
return certificates, hashes, nil
}
// EFISignatureData represents the EFI_SIGNATURE_DATA type.
// See section "31.4.1 Signature Database" in the specification
// for more information.
type EFISignatureData struct {
SignatureOwner efiGUID
SignatureData []byte // []int8
}
func parseEfiSignature(b []byte) ([]x509.Certificate, error) {
certificates := []x509.Certificate{}
if len(b) < 16 {
return nil, fmt.Errorf("invalid signature: buffer smaller than header (%d < %d)", len(b), 16)
}
buf := bytes.NewReader(b)
signature := EFISignatureData{}
signature.SignatureData = make([]byte, len(b)-16)
if err := binary.Read(buf, binary.LittleEndian, &signature.SignatureOwner); err != nil {
return certificates, err
}
if err := binary.Read(buf, binary.LittleEndian, &signature.SignatureData); err != nil {
return certificates, err
}
cert, err := x509.ParseCertificate(signature.SignatureData)
if err == nil {
certificates = append(certificates, *cert)
} else {
// A bug in shim may cause an event to be missing the SignatureOwner GUID.
// We handle this, but signal back to the caller using ErrSigMissingGUID.
if _, isStructuralErr := err.(asn1.StructuralError); isStructuralErr {
var err2 error
cert, err2 = x509.ParseCertificate(b)
if err2 == nil {
certificates = append(certificates, *cert)
err = ErrSigMissingGUID
}
}
}
return certificates, err
}
type EFIDevicePathElement struct {
Type EFIDeviceType
Subtype uint8
Data []byte
}
// EFIImageLoad describes an EFI_IMAGE_LOAD_EVENT structure.
type EFIImageLoad struct {
Header EFIImageLoadHeader
DevPathData []byte
}
type EFIImageLoadHeader struct {
LoadAddr uint64
Length uint64
LinkAddr uint64
DevicePathLen uint64
}
func parseDevicePathElement(r io.Reader) (EFIDevicePathElement, error) {
var (
out EFIDevicePathElement
dataLen uint16
)
if err := binary.Read(r, binary.LittleEndian, &out.Type); err != nil {
return EFIDevicePathElement{}, fmt.Errorf("reading type: %v", err)
}
if err := binary.Read(r, binary.LittleEndian, &out.Subtype); err != nil {
return EFIDevicePathElement{}, fmt.Errorf("reading subtype: %v", err)
}
if err := binary.Read(r, binary.LittleEndian, &dataLen); err != nil {
return EFIDevicePathElement{}, fmt.Errorf("reading data len: %v", err)
}
if dataLen > maxNameLen {
return EFIDevicePathElement{}, fmt.Errorf("device path data too long: %d > %d", dataLen, maxNameLen)
}
if dataLen < 4 {
return EFIDevicePathElement{}, fmt.Errorf("device path data too short: %d < %d", dataLen, 4)
}
out.Data = make([]byte, dataLen-4)
if err := binary.Read(r, binary.LittleEndian, &out.Data); err != nil {
return EFIDevicePathElement{}, fmt.Errorf("reading data: %v", err)
}
return out, nil
}
func (h *EFIImageLoad) DevicePath() ([]EFIDevicePathElement, error) {
var (
r = bytes.NewReader(h.DevPathData)
out []EFIDevicePathElement
)
for r.Len() > 0 {
e, err := parseDevicePathElement(r)
if err != nil {
return nil, err
}
if e.Type == EndDeviceArrayMarker {
return out, nil
}
out = append(out, e)
}
return out, nil
}
// ParseEFIImageLoad parses an EFI_IMAGE_LOAD_EVENT structure.
//
// https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf#page=17
func ParseEFIImageLoad(r io.Reader) (ret EFIImageLoad, err error) {
err = binary.Read(r, binary.LittleEndian, &ret.Header)
if err != nil {
return
}
if ret.Header.DevicePathLen > maxNameLen {
return EFIImageLoad{}, fmt.Errorf("device path structure too long: %d > %d", ret.Header.DevicePathLen, maxNameLen)
}
ret.DevPathData = make([]byte, ret.Header.DevicePathLen)
err = binary.Read(r, binary.LittleEndian, &ret.DevPathData)
return
}