go-attestation/attest/eventlog.go

401 lines
11 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2019 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy of
// the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations under
// the License.
package attest
import (
"bytes"
"crypto"
"encoding/binary"
"fmt"
"io"
"sort"
// Ensure hashes are available.
"crypto/rsa"
"crypto/sha1"
_ "crypto/sha256"
"github.com/google/go-tpm/tpm2"
"github.com/google/go-tpm/tpmutil"
)
// TPM algorithms. See the TPM 2.0 specification section 6.3.
//
// https://trustedcomputinggroup.org/wp-content/uploads/TPM-Rev-2.0-Part-2-Structures-01.38.pdf#page=42
const (
algSHA1 uint16 = 0x0004
algSHA256 uint16 = 0x000B
)
// EventType indicates what kind of data an event is reporting.
type EventType uint32
// Event is a single event from a TCG event log. This reports descrete items such
// as BIOs measurements or EFI states.
type Event struct {
// PCR index of the event.
Index int
// Type of the event.
Type EventType
// Data of the event. For certain kinds of events, this must match the event
// digest to be valid.
Data []byte
// Digest is the verified digest of the event data. While an event can have
// multiple for different hash values, this is the one that was matched to the
// PCR value.
Digest []byte
// TODO(ericchiang): Provide examples or links for which event types must
// match their data to their digest.
}
// ParseEventLog parses an unverified measurement log.
func ParseEventLog(measurementLog []byte) (*EventLog, error) {
rawEvents, err := parseEventLog(measurementLog)
if err != nil {
return nil, fmt.Errorf("parsing measurement log: %v", err)
}
return &EventLog{rawEvents}, nil
}
// EventLog is a parsed measurement log. This contains unverified data representing
// boot events that must be replayed against PCR values to determine authenticity.
type EventLog struct {
rawEvents []rawEvent
}
// Verify replays the event log against a TPM's PCR values, returning events
// from the event log, or an error if the replayed PCR values did not match the
// provided PCR values.
func (e *EventLog) Verify(pcrs []PCR) ([]Event, error) {
events, err := replayEvents(e.rawEvents, pcrs)
if err != nil {
return nil, fmt.Errorf("pcrs failed to replay: %v", err)
}
return events, nil
}
type rawAttestationData struct {
Version [4]byte // This MUST be 1.1.0.0
Fixed [4]byte // This SHALL always be the string QUOT
Digest [20]byte // PCR Composite Hash
Nonce [20]byte // Nonce Hash
}
var (
fixedQuote = [4]byte{'Q', 'U', 'O', 'T'}
)
type rawPCRComposite struct {
Size uint16 // always 3
PCRMask [3]byte
Values tpmutil.U32Bytes
}
func (a *AIKPublic) validate12Quote(quote Quote, pcrs []PCR, nonce []byte) error {
pub, ok := a.Public.(*rsa.PublicKey)
if !ok {
return fmt.Errorf("unsupported public key type: %T", a.Public)
}
qHash := sha1.Sum(quote.Quote)
if err := rsa.VerifyPKCS1v15(pub, crypto.SHA1, qHash[:], quote.Signature); err != nil {
return fmt.Errorf("invalid quote signature: %v", err)
}
var att rawAttestationData
if _, err := tpmutil.Unpack(quote.Quote, &att); err != nil {
return fmt.Errorf("parsing quote: %v", err)
}
// TODO(ericchiang): validate Version field.
if att.Nonce != sha1.Sum(nonce) {
return fmt.Errorf("invalid nonce")
}
if att.Fixed != fixedQuote {
return fmt.Errorf("quote wasn't a QUOT object: %x", att.Fixed)
}
// See 5.4.1 Creating a PCR composite hash
sort.Slice(pcrs, func(i, j int) bool { return pcrs[i].Index < pcrs[j].Index })
var (
pcrMask [3]byte // bitmap indicating which PCRs are active
values []byte // appended values of all PCRs
)
for _, pcr := range pcrs {
if pcr.Index < 0 || pcr.Index >= 24 {
return fmt.Errorf("invalid PCR index: %d", pcr.Index)
}
pcrMask[pcr.Index/8] |= 1 << uint(pcr.Index%8)
values = append(values, pcr.Digest...)
}
composite, err := tpmutil.Pack(rawPCRComposite{3, pcrMask, values})
if err != nil {
return fmt.Errorf("marshaling PCRs: %v", err)
}
if att.Digest != sha1.Sum(composite) {
return fmt.Errorf("PCRs passed didn't match quote: %v", err)
}
return nil
}
func (a *AIKPublic) validate20Quote(quote Quote, pcrs []PCR, nonce []byte) error {
sig, err := tpm2.DecodeSignature(bytes.NewBuffer(quote.Signature))
if err != nil {
return fmt.Errorf("parse quote signature: %v", err)
}
sigHash := a.Hash.New()
sigHash.Write(quote.Quote)
switch pub := a.Public.(type) {
case *rsa.PublicKey:
if sig.RSA == nil {
return fmt.Errorf("rsa public key provided for ec signature")
}
sigBytes := []byte(sig.RSA.Signature)
if err := rsa.VerifyPKCS1v15(pub, a.Hash, sigHash.Sum(nil), sigBytes); err != nil {
return fmt.Errorf("invalid quote signature: %v", err)
}
default:
// TODO(ericchiang): support ecdsa
return fmt.Errorf("unsupported public key type %T", pub)
}
att, err := tpm2.DecodeAttestationData(quote.Quote)
if err != nil {
return fmt.Errorf("parsing quote signature: %v", err)
}
if att.Type != tpm2.TagAttestQuote {
return fmt.Errorf("attestation isn't a quote, tag of type 0x%x", att.Type)
}
if !bytes.Equal([]byte(att.ExtraData), nonce) {
return fmt.Errorf("nonce didn't match: %v", err)
}
pcrByIndex := map[int][]byte{}
for _, pcr := range pcrs {
pcrByIndex[pcr.Index] = pcr.Digest
}
n := len(att.AttestedQuoteInfo.PCRDigest)
hash, ok := hashBySize[n]
if !ok {
return fmt.Errorf("quote used unsupported hash algorithm length: %d", n)
}
h := hash.New()
for _, index := range att.AttestedQuoteInfo.PCRSelection.PCRs {
digest, ok := pcrByIndex[index]
if !ok {
return fmt.Errorf("quote was over PCR %d which wasn't provided", index)
}
if len(digest) != hash.Size() {
return fmt.Errorf("mismatch pcr and quote hash, pcr hash length=%d, quote hash length=%d", len(digest), hash.Size())
}
h.Write(digest)
}
if !bytes.Equal(h.Sum(nil), att.AttestedQuoteInfo.PCRDigest) {
return fmt.Errorf("quote digest didn't match pcrs provided")
}
return nil
}
var hashBySize = map[int]crypto.Hash{
crypto.SHA1.Size(): crypto.SHA1,
crypto.SHA256.Size(): crypto.SHA256,
}
func extend(pcr, replay []byte, e rawEvent) ([]byte, Event, error) {
h, ok := hashBySize[len(pcr)]
if !ok {
return nil, Event{}, fmt.Errorf("pcr %d was not a known hash size: %d", e.index, len(pcr))
}
for _, digest := range e.digests {
if len(digest) != len(pcr) {
continue
}
hash := h.New()
if len(replay) != 0 {
hash.Write(replay)
} else {
b := make([]byte, h.Size())
hash.Write(b)
}
hash.Write(digest)
return hash.Sum(nil), Event{e.index, e.typ, e.data, digest}, nil
}
return nil, Event{}, fmt.Errorf("no event digest matches pcr length: %d", len(pcr))
}
func replayEvents(rawEvents []rawEvent, pcrs []PCR) ([]Event, error) {
events := []Event{}
replay := map[int][]byte{}
pcrByIndex := map[int][]byte{}
for _, pcr := range pcrs {
pcrByIndex[pcr.Index] = pcr.Digest
}
for i, e := range rawEvents {
pcrValue, ok := pcrByIndex[e.index]
if !ok {
// Ignore events for PCRs that weren't included in the quote.
continue
}
replayValue, event, err := extend(pcrValue, replay[e.index], e)
if err != nil {
return nil, fmt.Errorf("replaying event %d: %v", i, err)
}
replay[e.index] = replayValue
events = append(events, event)
}
var invalidReplays []int
for i, value := range replay {
if !bytes.Equal(value, pcrByIndex[i]) {
invalidReplays = append(invalidReplays, i)
}
}
if len(invalidReplays) > 0 {
return nil, fmt.Errorf("the following registers failed to replay: %d", invalidReplays)
}
return events, nil
}
// EV_NO_ACTION is a special event type that indicates information to the parser
// instead of holding a measurement. For TPM 2.0, this event type is used to signal
// switching from SHA1 format to a variable length digest.
//
// https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClientSpecPlat_TPM_2p0_1p04_pub.pdf#page=110
const eventTypeNoAction = 0x03
func parseEventLog(b []byte) ([]rawEvent, error) {
r := bytes.NewBuffer(b)
parseFn := parseRawEvent
e, err := parseFn(r)
if err != nil {
return nil, fmt.Errorf("parse first event: %v", err)
}
var events []rawEvent
if e.typ == eventTypeNoAction {
// Switch to parsing crypto agile events. Don't include this in the
// replayed events since it's intentionally switching from SHA1 to
// SHA256 and will fail to extend a SHA256 PCR value.
//
// NOTE(ericchiang): to be strict, we could parse the event data as a
// TCG_EfiSpecIDEventStruct and validate the algorithms. But for now,
// assume this indicates a switch from SHA1 format to SHA1/SHA256.
//
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=18
parseFn = parseRawEvent2
} else {
events = append(events, e)
}
for r.Len() != 0 {
e, err := parseFn(r)
if err != nil {
return nil, err
}
events = append(events, e)
}
return events, nil
}
type rawEvent struct {
index int
typ EventType
data []byte
digests [][]byte
}
// TPM 1.2 event log format. See "5.1 SHA1 Event Log Entry Format"
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=15
type rawEventHeader struct {
PCRIndex uint32
Type uint32
Digest [20]byte
EventSize uint32
}
func parseRawEvent(r io.Reader) (event rawEvent, err error) {
var h rawEventHeader
if err = binary.Read(r, binary.LittleEndian, &h); err != nil {
return event, err
}
data := make([]byte, int(h.EventSize))
if _, err := io.ReadFull(r, data); err != nil {
return event, err
}
return rawEvent{
typ: EventType(h.Type),
data: data,
index: int(h.PCRIndex),
digests: [][]byte{h.Digest[:]},
}, nil
}
// TPM 2.0 event log format. See "5.2 Crypto Agile Log Entry Format"
// https://trustedcomputinggroup.org/wp-content/uploads/EFI-Protocol-Specification-rev13-160330final.pdf#page=15
type rawEvent2Header struct {
PCRIndex uint32
Type uint32
}
func parseRawEvent2(r io.Reader) (event rawEvent, err error) {
var h rawEvent2Header
if err = binary.Read(r, binary.LittleEndian, &h); err != nil {
return event, err
}
event.typ = EventType(h.Type)
event.index = int(h.PCRIndex)
// parse the event digests
var numDigests uint32
if err := binary.Read(r, binary.LittleEndian, &numDigests); err != nil {
return event, err
}
for i := 0; i < int(numDigests); i++ {
var algID uint16
if err := binary.Read(r, binary.LittleEndian, &algID); err != nil {
return event, err
}
var digest []byte
switch algID {
case algSHA1:
digest = make([]byte, crypto.SHA1.Size())
case algSHA256:
digest = make([]byte, crypto.SHA256.Size())
default:
// ignore signatures that aren't SHA1 or SHA256
continue
}
if _, err := io.ReadFull(r, digest); err != nil {
return event, err
}
event.digests = append(event.digests, digest)
}
// parse event data
var eventSize uint32
if err = binary.Read(r, binary.LittleEndian, &eventSize); err != nil {
return event, err
}
event.data = make([]byte, int(eventSize))
if _, err := io.ReadFull(r, event.data); err != nil {
return event, err
}
return event, err
}