Implement extractor for determining secure boot state (#148)

This commit is contained in:
Tom D 2019-12-19 12:28:32 -08:00 committed by GitHub
parent 34338f547c
commit e134551bb0
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 650 additions and 2 deletions

View File

@ -19,7 +19,9 @@ import (
"crypto"
"crypto/rsa"
"crypto/sha1"
"crypto/sha256"
"encoding/binary"
"errors"
"fmt"
"io"
"sort"
@ -77,6 +79,29 @@ type Event struct {
// match their data to their digest.
}
func (e *Event) digestEquals(b []byte) error {
if len(e.Digest) == 0 {
return errors.New("no digests present")
}
switch len(e.Digest) {
case crypto.SHA256.Size():
s := sha256.Sum256(b)
if bytes.Equal(s[:], e.Digest) {
return nil
}
case crypto.SHA1.Size():
s := sha1.Sum(b)
if bytes.Equal(s[:], e.Digest) {
return nil
}
default:
return fmt.Errorf("cannot compare hash of length %d", len(e.Digest))
}
return fmt.Errorf("digest (len %d) does not match", len(e.Digest))
}
// EventLog is a parsed measurement log. This contains unverified data representing
// boot events that must be replayed against PCR values to determine authenticity.
type EventLog struct {

View File

@ -134,7 +134,7 @@ func TestParseEventLogEventSizeTooLarge(t *testing.T) {
0x31, 0x39, 0x36, 0x33, 0x39, 0x34, 0x34, 0x37, 0x39, 0x32,
0x31, 0x32, 0x32, 0x37, 0x39, 0x30, 0x34, 0x30, 0x31, 0x6d,
// Even size (3.183 GB)
// Event size (3.183 GB)
0xbd, 0xbf, 0xef, 0x47,
// "event data"
@ -251,7 +251,7 @@ func TestParseSpecIDEvent(t *testing.T) {
return true
}
for _, alg := range(spec.algs) {
for _, alg := range spec.algs {
algs = append(algs, alg.ID)
}

371
attest/internal/events.go Normal file
View File

@ -0,0 +1,371 @@
package internal
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"unicode/utf16"
"github.com/google/certificate-transparency-go/x509"
)
const (
// maxNameLen is the maximum accepted byte length for a name field.
// This value should be larger than any reasonable value.
maxNameLen = 2048
// maxDataLen is the maximum size in bytes of a variable data field.
// This value should be larger than any reasonable value.
maxDataLen = 1024 * 1024 // 1 Megabyte.
)
// GUIDs representing the contents of an UEFI_SIGNATURE_LIST.
var (
hashSHA256SigGUID = efiGUID{0xc1c41626, 0x504c, 0x4092, [8]byte{0xac, 0xa9, 0x41, 0xf9, 0x36, 0x93, 0x43, 0x28}}
hashSHA1SigGUID = efiGUID{0x826ca512, 0xcf10, 0x4ac9, [8]byte{0xb1, 0x87, 0xbe, 0x01, 0x49, 0x66, 0x31, 0xbd}}
hashSHA224SigGUID = efiGUID{0x0b6e5233, 0xa65c, 0x44c9, [8]byte{0x94, 0x07, 0xd9, 0xab, 0x83, 0xbf, 0xc8, 0xbd}}
hashSHA384SigGUID = efiGUID{0xff3e5307, 0x9fd0, 0x48c9, [8]byte{0x85, 0xf1, 0x8a, 0xd5, 0x6c, 0x70, 0x1e, 0x01}}
hashSHA512SigGUID = efiGUID{0x093e0fae, 0xa6c4, 0x4f50, [8]byte{0x9f, 0x1b, 0xd4, 0x1e, 0x2b, 0x89, 0xc1, 0x9a}}
keyRSA2048SigGUID = efiGUID{0x3c5766e8, 0x269c, 0x4e34, [8]byte{0xaa, 0x14, 0xed, 0x77, 0x6e, 0x85, 0xb3, 0xb6}}
certRSA2048SHA256SigGUID = efiGUID{0xe2b36190, 0x879b, 0x4a3d, [8]byte{0xad, 0x8d, 0xf2, 0xe7, 0xbb, 0xa3, 0x27, 0x84}}
certRSA2048SHA1SigGUID = efiGUID{0x67f8444f, 0x8743, 0x48f1, [8]byte{0xa3, 0x28, 0x1e, 0xaa, 0xb8, 0x73, 0x60, 0x80}}
certX509SigGUID = efiGUID{0xa5c059a1, 0x94e4, 0x4aa7, [8]byte{0x87, 0xb5, 0xab, 0x15, 0x5c, 0x2b, 0xf0, 0x72}}
certHashSHA256SigGUID = efiGUID{0x3bd2a492, 0x96c0, 0x4079, [8]byte{0xb4, 0x20, 0xfc, 0xf9, 0x8e, 0xf1, 0x03, 0xed}}
certHashSHA384SigGUID = efiGUID{0x7076876e, 0x80c2, 0x4ee6, [8]byte{0xaa, 0xd2, 0x28, 0xb3, 0x49, 0xa6, 0x86, 0x5b}}
certHashSHA512SigGUID = efiGUID{0x446dbf63, 0x2502, 0x4cda, [8]byte{0xbc, 0xfa, 0x24, 0x65, 0xd2, 0xb0, 0xfe, 0x9d}}
)
// EventType describes the type of event signalled in the event log.
type EventType uint32
// BIOS Events (TCG PC Client Specific Implementation Specification for Conventional BIOS 1.21)
const (
PrebootCert EventType = 0x00000000
PostCode EventType = 0x00000001
unused EventType = 0x00000002
NoAction EventType = 0x00000003
Separator EventType = 0x00000004
Action EventType = 0x00000005
EventTag EventType = 0x00000006
SCRTMContents EventType = 0x00000007
SCRTMVersion EventType = 0x00000008
CpuMicrocode EventType = 0x00000009
PlatformConfigFlags EventType = 0x0000000A
TableOfDevices EventType = 0x0000000B
CompactHash EventType = 0x0000000C
Ipl EventType = 0x0000000D
IplPartitionData EventType = 0x0000000E
NonhostCode EventType = 0x0000000F
NonhostConfig EventType = 0x00000010
NonhostInfo EventType = 0x00000011
OmitBootDeviceEvents EventType = 0x00000012
)
// EFI Events (TCG EFI Platform Specification Version 1.22)
const (
EFIEventBase EventType = 0x80000000
EFIVariableDriverConfig EventType = 0x80000001
EFIVariableBoot EventType = 0x80000002
EFIBootServicesApplication EventType = 0x80000003
EFIBootServicesDriver EventType = 0x80000004
EFIRuntimeServicesDriver EventType = 0x80000005
EFIGPTEvent EventType = 0x80000006
EFIAction EventType = 0x80000007
EFIPlatformFirmwareBlob EventType = 0x80000008
EFIHandoffTables EventType = 0x80000009
EFIHCRTMEvent EventType = 0x80000010
EFIVariableAuthority EventType = 0x800000e0
)
var eventTypeNames = map[EventType]string{
PrebootCert: "Preboot Cert",
PostCode: "POST Code",
unused: "Unused",
NoAction: "No Action",
Separator: "Separator",
Action: "Action",
EventTag: "Event Tag",
SCRTMContents: "S-CRTM Contents",
SCRTMVersion: "S-CRTM Version",
CpuMicrocode: "CPU Microcode",
PlatformConfigFlags: "Platform Config Flags",
TableOfDevices: "Table of Devices",
CompactHash: "Compact Hash",
Ipl: "IPL",
IplPartitionData: "IPL Partition Data",
NonhostCode: "Non-Host Code",
NonhostConfig: "Non-HostConfig",
NonhostInfo: "Non-Host Info",
OmitBootDeviceEvents: "Omit Boot Device Events",
EFIEventBase: "EFI Event Base",
EFIVariableDriverConfig: "EFI Variable Driver Config",
EFIVariableBoot: "EFI Variable Boot",
EFIBootServicesApplication: "EFI Boot Services Application",
EFIBootServicesDriver: "EFI Boot Services Driver",
EFIRuntimeServicesDriver: "EFI Runtime Services Driver",
EFIGPTEvent: "EFI GPT Event",
EFIAction: "EFI Action",
EFIPlatformFirmwareBlob: "EFI Platform Firmware Blob",
EFIVariableAuthority: "EFI Variable Authority",
EFIHandoffTables: "EFI Handoff Tables",
EFIHCRTMEvent: "EFI H-CRTM Event",
}
func (e EventType) String() string {
if s, ok := eventTypeNames[e]; ok {
return s
}
return fmt.Sprintf("EventType(0x%x)", uint32(e))
}
// UntrustedParseEventType returns the event type indicated by
// the provided value.
func UntrustedParseEventType(et uint32) (EventType, error) {
// "The value associated with a UEFI specific platform event type MUST be in
// the range between 0x80000000 and 0x800000FF, inclusive."
if (et < 0x80000000 && et > 0x800000FF) || (et < 0x0 && et > 0x12) {
return EventType(0), fmt.Errorf("event type not between [0x0, 0x12] or [0x80000000, 0x800000FF]: got %#x", et)
}
if _, ok := eventTypeNames[EventType(et)]; !ok {
return EventType(0), fmt.Errorf("unknown event type %#x", et)
}
return EventType(et), nil
}
// efiGUID represents the EFI_GUID type.
// See section "2.3.1 Data Types" in the specification for more information.
// type efiGUID [16]byte
type efiGUID struct {
Data1 uint32
Data2 uint16
Data3 uint16
Data4 [8]byte
}
func (d efiGUID) String() string {
var u [8]byte
binary.BigEndian.PutUint32(u[:4], d.Data1)
binary.BigEndian.PutUint16(u[4:6], d.Data2)
binary.BigEndian.PutUint16(u[6:8], d.Data3)
return fmt.Sprintf("%x-%x-%x-%x-%x", u[:4], u[4:6], u[6:8], d.Data4[:2], d.Data4[2:])
}
// UEFIVariableDataHeader represents the leading fixed-size fields
// within UEFI_VARIABLE_DATA.
type UEFIVariableDataHeader struct {
VariableName efiGUID
UnicodeNameLength uint64 // uintN
VariableDataLength uint64 // uintN
}
// UEFIVariableData represents the UEFI_VARIABLE_DATA structure.
type UEFIVariableData struct {
Header UEFIVariableDataHeader
UnicodeName []uint16
VariableData []byte // []int8
}
// ParseUEFIVariableData parses the data section of an event structured as
// a UEFI variable.
//
// https://trustedcomputinggroup.org/wp-content/uploads/TCG_PCClient_Specific_Platform_Profile_for_TPM_2p0_1p04_PUBLIC.pdf#page=100
func ParseUEFIVariableData(r io.Reader) (ret UEFIVariableData, err error) {
err = binary.Read(r, binary.LittleEndian, &ret.Header)
if err != nil {
return
}
if ret.Header.UnicodeNameLength > maxNameLen {
return UEFIVariableData{}, fmt.Errorf("unicode name too long: %d > %d", ret.Header.UnicodeNameLength, maxNameLen)
}
ret.UnicodeName = make([]uint16, ret.Header.UnicodeNameLength)
for i := 0; uint64(i) < ret.Header.UnicodeNameLength; i++ {
err = binary.Read(r, binary.LittleEndian, &ret.UnicodeName[i])
if err != nil {
return
}
}
if ret.Header.VariableDataLength > maxDataLen {
return UEFIVariableData{}, fmt.Errorf("variable data too long: %d > %d", ret.Header.VariableDataLength, maxDataLen)
}
ret.VariableData = make([]byte, ret.Header.VariableDataLength)
_, err = io.ReadFull(r, ret.VariableData)
return
}
func (v *UEFIVariableData) VarName() string {
return string(utf16.Decode(v.UnicodeName))
}
func (v *UEFIVariableData) SignatureData() (certs []x509.Certificate, hashes [][]byte, err error) {
return parseEfiSignatureList(v.VariableData)
}
// UEFIVariableAuthority describes the contents of a UEFI variable authority
// event.
type UEFIVariableAuthority struct {
Certs []x509.Certificate
}
// ParseUEFIVariableAuthority parses the data section of an event structured as
// a UEFI variable authority.
//
// https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf#page=1789
func ParseUEFIVariableAuthority(r io.Reader) (UEFIVariableAuthority, error) {
v, err := ParseUEFIVariableData(r)
if err != nil {
return UEFIVariableAuthority{}, err
}
certs, err := parseEfiSignature(v.VariableData)
if err != nil {
return UEFIVariableAuthority{}, err
}
return UEFIVariableAuthority{Certs: certs}, nil
}
// efiSignatureData represents the EFI_SIGNATURE_DATA type.
// See section "31.4.1 Signature Database" in the specification for more information.
type efiSignatureData struct {
SignatureOwner efiGUID
SignatureData []byte // []int8
}
// efiSignatureList represents the EFI_SIGNATURE_LIST type.
// See section "31.4.1 Signature Database" in the specification for more information.
type efiSignatureListHeader struct {
SignatureType efiGUID
SignatureListSize uint32
SignatureHeaderSize uint32
SignatureSize uint32
}
type efiSignatureList struct {
Header efiSignatureListHeader
SignatureData []byte
Signatures []byte
}
// parseEfiSignatureList parses a EFI_SIGNATURE_LIST structure.
// The structure and related GUIDs are defined at:
// https://uefi.org/sites/default/files/resources/UEFI_Spec_2_8_final.pdf#page=1790
func parseEfiSignatureList(b []byte) ([]x509.Certificate, [][]byte, error) {
if len(b) < 28 {
// Being passed an empty signature list here appears to be valid
return nil, nil, nil
}
signatures := efiSignatureList{}
buf := bytes.NewReader(b)
certificates := []x509.Certificate{}
hashes := [][]byte{}
for buf.Len() > 0 {
err := binary.Read(buf, binary.LittleEndian, &signatures.Header)
if err != nil {
return nil, nil, err
}
if signatures.Header.SignatureHeaderSize > maxDataLen {
return nil, nil, fmt.Errorf("signature header too large: %d > %d", signatures.Header.SignatureHeaderSize, maxDataLen)
}
if signatures.Header.SignatureListSize > maxDataLen {
return nil, nil, fmt.Errorf("signature list too large: %d > %d", signatures.Header.SignatureListSize, maxDataLen)
}
signatureType := signatures.Header.SignatureType
switch signatureType {
case certX509SigGUID: // X509 certificate
for sigOffset := 0; uint32(sigOffset) < signatures.Header.SignatureListSize-28; {
signature := efiSignatureData{}
signature.SignatureData = make([]byte, signatures.Header.SignatureSize-16)
err := binary.Read(buf, binary.LittleEndian, &signature.SignatureOwner)
if err != nil {
return nil, nil, err
}
err = binary.Read(buf, binary.LittleEndian, &signature.SignatureData)
if err != nil {
return nil, nil, err
}
cert, err := x509.ParseCertificate(signature.SignatureData)
if err != nil {
return nil, nil, err
}
sigOffset += int(signatures.Header.SignatureSize)
certificates = append(certificates, *cert)
}
case hashSHA256SigGUID: // SHA256
for sigOffset := 0; uint32(sigOffset) < signatures.Header.SignatureListSize-28; {
signature := efiSignatureData{}
signature.SignatureData = make([]byte, signatures.Header.SignatureSize-16)
err := binary.Read(buf, binary.LittleEndian, &signature.SignatureOwner)
if err != nil {
return nil, nil, err
}
err = binary.Read(buf, binary.LittleEndian, &signature.SignatureData)
if err != nil {
return nil, nil, err
}
hashes = append(hashes, signature.SignatureData)
sigOffset += int(signatures.Header.SignatureSize)
}
case keyRSA2048SigGUID:
err = errors.New("unhandled RSA2048 key")
case certRSA2048SHA256SigGUID:
err = errors.New("unhandled RSA2048-SHA256 key")
case hashSHA1SigGUID:
err = errors.New("unhandled SHA1 hash")
case certRSA2048SHA1SigGUID:
err = errors.New("unhandled RSA2048-SHA1 key")
case hashSHA224SigGUID:
err = errors.New("unhandled SHA224 hash")
case hashSHA384SigGUID:
err = errors.New("unhandled SHA384 hash")
case hashSHA512SigGUID:
err = errors.New("unhandled SHA512 hash")
case certHashSHA256SigGUID:
err = errors.New("unhandled X509-SHA256 hash metadata")
case certHashSHA384SigGUID:
err = errors.New("unhandled X509-SHA384 hash metadata")
case certHashSHA512SigGUID:
err = errors.New("unhandled X509-SHA512 hash metadata")
default:
err = fmt.Errorf("unhandled signature type %s", signatureType)
}
if err != nil {
return nil, nil, err
}
}
return certificates, hashes, nil
}
// EFISignatureData represents the EFI_SIGNATURE_DATA type.
// See section "31.4.1 Signature Database" in the specification
// for more information.
type EFISignatureData struct {
SignatureOwner efiGUID
SignatureData []byte // []int8
}
func parseEfiSignature(b []byte) ([]x509.Certificate, error) {
certificates := []x509.Certificate{}
if len(b) < 16 {
return nil, fmt.Errorf("invalid signature: buffer smaller than header (%d < %d)", len(b), 16)
}
buf := bytes.NewReader(b)
signature := EFISignatureData{}
signature.SignatureData = make([]byte, len(b)-16)
if err := binary.Read(buf, binary.LittleEndian, &signature.SignatureOwner); err != nil {
return certificates, err
}
if err := binary.Read(buf, binary.LittleEndian, &signature.SignatureData); err != nil {
return certificates, err
}
cert, err := x509.ParseCertificate(signature.SignatureData)
if err == nil {
certificates = append(certificates, *cert)
}
return certificates, err
}

View File

@ -0,0 +1,32 @@
package internal
import (
"bytes"
"testing"
"github.com/google/go-cmp/cmp"
)
func TestParseUEFIVariableData(t *testing.T) {
data := []byte{0x61, 0xdf, 0xe4, 0x8b, 0xca, 0x93, 0xd2, 0x11, 0xaa, 0xd, 0x0, 0xe0, 0x98,
0x3, 0x2b, 0x8c, 0xa, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0, 0x53, 0x0, 0x65, 0x0, 0x63, 0x0, 0x75, 0x0, 0x72, 0x0,
0x65, 0x0, 0x42, 0x0, 0x6f, 0x0, 0x6f, 0x0, 0x74, 0x0, 0x1}
want := UEFIVariableData{
Header: UEFIVariableDataHeader{
VariableName: efiGUID{Data1: 0x8be4df61, Data2: 0x93ca, Data3: 0x11d2, Data4: [8]uint8{0xaa, 0xd, 0x0, 0xe0, 0x98, 0x3, 0x2b, 0x8c}},
UnicodeNameLength: 0xa,
VariableDataLength: 0x1,
},
UnicodeName: []uint16{0x53, 0x65, 0x63, 0x75, 0x72, 0x65, 0x42, 0x6f, 0x6f, 0x74},
VariableData: []uint8{0x1},
}
got, err := ParseUEFIVariableData(bytes.NewReader(data))
if err != nil {
t.Fatalf("ParseEFIVariableData() failed: %v", err)
}
if diff := cmp.Diff(want, got); diff != "" {
t.Errorf("ParseUEFIVariableData() mismatch (-want +got):\n%s", diff)
}
}

181
attest/secureboot.go Normal file
View File

@ -0,0 +1,181 @@
package attest
import (
"bytes"
"errors"
"fmt"
"github.com/google/certificate-transparency-go/x509"
"github.com/google/go-attestation/attest/internal"
)
// SecurebootState describes the secure boot status of a machine, as determined
// by processing its event log.
type SecurebootState struct {
Enabled bool
// PlatformKeys enumerates keys which can sign a key exchange key.
PlatformKeys []x509.Certificate
// PlatformKeys enumerates key hashes which can sign a key exchange key.
PlatformKeyHashes [][]byte
// ExchangeKeys enumerates keys which can sign a database of permitted or
// forbidden keys.
ExchangeKeys []x509.Certificate
// ExchangeKeyHashes enumerates key hashes which can sign a database or
// permitted or forbidden keys.
ExchangeKeyHashes [][]byte
// PermittedKeys enumerates keys which may sign binaries to run.
PermittedKeys []x509.Certificate
// PermittedHashes enumerates hashes which permit binaries to run.
PermittedHashes [][]byte
// ForbiddenKeys enumerates keys which must not permit a binary to run.
ForbiddenKeys []x509.Certificate
// ForbiddenKeys enumerates hashes which must not permit a binary to run.
ForbiddenHashes [][]byte
// PreSeparatorAuthority describes the use of a secure-boot key to authorize
// the execution of a binary before the separator.
PreSeparatorAuthority []x509.Certificate
// PostSeparatorAuthority describes the use of a secure-boot key to authorize
// the execution of a binary after the separator.
PostSeparatorAuthority []x509.Certificate
}
// ParseSecurebootState parses a series of events to determine the
// configuration of secure boot on a device. An error is returned if
// the state cannot be determined, or if the event log is structured
// in such a way that it may have been tampered post-execution of
// platform firmware.
func ParseSecurebootState(events []Event) (*SecurebootState, error) {
// This algorithm verifies the following:
// - All events in PCR 7 have event types which are expected in PCR 7.
// - All events are parsable according to their event type.
// - All events have digests values corresponding to their data/event type.
// - No unverifiable events were present.
// - All variables are specified before the separator and never duplicated.
// - The SecureBoot variable has a value of 0 or 1.
// - If SecureBoot was 1 (enabled), authority events were present indicating
// keys were used to perform verification.
// - If SecureBoot was 1 (enabled), platform + exchange + database keys
// were specified.
// - No UEFI debugger was attached.
var (
out SecurebootState
seenSeparator bool
seenAuthority bool
seenVars = map[string]bool{}
)
for _, e := range events {
if e.Index != 7 {
continue
}
et, err := internal.UntrustedParseEventType(uint32(e.Type))
if err != nil {
return nil, fmt.Errorf("unrecognised event type: %v", err)
}
digestVerify := e.digestEquals(e.Data)
switch et {
case internal.Separator:
if seenSeparator {
return nil, fmt.Errorf("duplicate separator at event %d", e.sequence)
}
seenSeparator = true
if !bytes.Equal(e.Data, []byte{0, 0, 0, 0}) {
return nil, fmt.Errorf("invalid separator data at event %d: %v", e.sequence, e.Data)
}
if digestVerify != nil {
return nil, fmt.Errorf("invalid separator digest at event %d: %v", e.sequence, digestVerify)
}
case internal.EFIAction:
if string(e.Data) == "UEFI Debug Mode" {
return nil, errors.New("a UEFI debugger was present during boot")
}
return nil, fmt.Errorf("event %d: unexpected EFI action event", e.sequence)
case internal.EFIVariableDriverConfig:
v, err := internal.ParseUEFIVariableData(bytes.NewReader(e.Data))
if err != nil {
return nil, fmt.Errorf("failed parsing EFI variable at event %d: %v", e.sequence, err)
}
if _, seenBefore := seenVars[v.VarName()]; seenBefore {
return nil, fmt.Errorf("duplicate EFI variable %q at event %d", v.VarName(), e.sequence)
}
seenVars[v.VarName()] = true
if seenSeparator {
return nil, fmt.Errorf("event %d: variable %q specified after separator", e.sequence, v.VarName())
}
if digestVerify != nil {
return nil, fmt.Errorf("invalid digest for variable %q on event %d: %v", v.VarName(), e.sequence, digestVerify)
}
switch v.VarName() {
case "SecureBoot":
if len(v.VariableData) != 1 {
return nil, fmt.Errorf("event %d: SecureBoot data len is %d, expected 1", e.sequence, len(v.VariableData))
}
out.Enabled = v.VariableData[0] == 1
case "PK":
if out.PlatformKeys, out.PlatformKeyHashes, err = v.SignatureData(); err != nil {
return nil, fmt.Errorf("event %d: failed parsing platform keys: %v", e.sequence, err)
}
case "KEK":
if out.ExchangeKeys, out.ExchangeKeyHashes, err = v.SignatureData(); err != nil {
return nil, fmt.Errorf("event %d: failed parsing key exchange keys: %v", e.sequence, err)
}
case "db":
if out.PermittedKeys, out.PermittedHashes, err = v.SignatureData(); err != nil {
return nil, fmt.Errorf("event %d: failed parsing signature database: %v", e.sequence, err)
}
case "dbx":
if out.ForbiddenKeys, out.ForbiddenHashes, err = v.SignatureData(); err != nil {
return nil, fmt.Errorf("event %d: failed parsing forbidden signature database: %v", e.sequence, err)
}
}
case internal.EFIVariableAuthority:
a, err := internal.ParseUEFIVariableAuthority(bytes.NewReader(e.Data))
if err != nil {
return nil, fmt.Errorf("failed parsing EFI variable authority at event %d: %v", e.sequence, err)
}
seenAuthority = true
if digestVerify != nil {
return nil, fmt.Errorf("invalid digest for authority on event %d: %v", e.sequence, digestVerify)
}
if !seenSeparator {
out.PreSeparatorAuthority = append(out.PreSeparatorAuthority, a.Certs...)
} else {
out.PostSeparatorAuthority = append(out.PostSeparatorAuthority, a.Certs...)
}
default:
return nil, fmt.Errorf("unexpected event type: %v", et)
}
}
if !out.Enabled {
return &out, nil
}
if !seenAuthority {
return nil, errors.New("secure boot was enabled but no key was used")
}
if len(out.PlatformKeys) == 0 && len(out.PlatformKeyHashes) == 0 {
return nil, errors.New("secure boot was enabled but no platform keys were known")
}
if len(out.ExchangeKeys) == 0 && len(out.ExchangeKeyHashes) == 0 {
return nil, errors.New("secure boot was enabled but no key exchange keys were known")
}
if len(out.PermittedKeys) == 0 && len(out.PermittedHashes) == 0 {
return nil, errors.New("secure boot was enabled but no keys or hashes were permitted")
}
return &out, nil
}

36
attest/secureboot_test.go Normal file
View File

@ -0,0 +1,36 @@
package attest
import (
"encoding/json"
"io/ioutil"
"testing"
)
func TestSecureBoot(t *testing.T) {
data, err := ioutil.ReadFile("testdata/windows_gcp_shielded_vm.json")
if err != nil {
t.Fatalf("reading test data: %v", err)
}
var dump Dump
if err := json.Unmarshal(data, &dump); err != nil {
t.Fatalf("parsing test data: %v", err)
}
el, err := ParseEventLog(dump.Log.Raw)
if err != nil {
t.Fatalf("parsing event log: %v", err)
}
events, err := el.Verify(dump.Log.PCRs)
if err != nil {
t.Fatalf("validating event log: %v", err)
}
sbState, err := ParseSecurebootState(events)
if err != nil {
t.Fatalf("ExtractSecurebootState() failed: %v", err)
}
if got, want := sbState.Enabled, true; got != want {
t.Errorf("secureboot.Enabled = %v, want %v", got, want)
}
}

1
go.mod
View File

@ -4,6 +4,7 @@ go 1.12
require (
github.com/google/certificate-transparency-go v1.0.22-0.20190605205155-41fc2ef3a2a8
github.com/google/go-cmp v0.3.1
github.com/google/go-tpm v0.2.1-0.20191015210219-431489f43254
github.com/google/go-tpm-tools v0.1.1
github.com/google/go-tspi v0.2.1-0.20190423175329-115dea689aad

2
go.sum
View File

@ -12,6 +12,8 @@ github.com/google/certificate-transparency-go v1.0.21 h1:Yf1aXowfZ2nuboBsg7iYGLm
github.com/google/certificate-transparency-go v1.0.21/go.mod h1:QeJfpSbVSfYc7RgB3gJFj9cbuQMMchQxrWXz8Ruopmg=
github.com/google/certificate-transparency-go v1.0.22-0.20190605205155-41fc2ef3a2a8 h1:G3Wse9lGL7PmAl2jqdr0HgwhPkGA5KHu7guIPREa7DU=
github.com/google/certificate-transparency-go v1.0.22-0.20190605205155-41fc2ef3a2a8/go.mod h1:QeJfpSbVSfYc7RgB3gJFj9cbuQMMchQxrWXz8Ruopmg=
github.com/google/go-cmp v0.3.1 h1:Xye71clBPdm5HgqGwUkwhbynsUJZhDbS20FvLhQ2izg=
github.com/google/go-cmp v0.3.1/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU=
github.com/google/go-tpm v0.1.2-0.20190725015402-ae6dd98980d4 h1:GNNkIb6NSjYfw+KvgUFW590mcgsSFihocSrbXct1sEw=
github.com/google/go-tpm v0.1.2-0.20190725015402-ae6dd98980d4/go.mod h1:H9HbmUG2YgV/PHITkO7p6wxEEj/v5nlsVWIwumwH2NI=
github.com/google/go-tpm v0.2.1-0.20190910203116-33a9c3f38379/go.mod h1:gTv8GNuqS7CI+tQWrpt5BMMaD5W3G+dZULQLhhAKT5c=