genode/doc/getting_started.txt
2017-12-21 15:01:38 +01:00

145 lines
6.0 KiB
Plaintext

=============================
How to start exploring Genode
=============================
Norman Feske
Abstract
########
This guide is meant to provide you a painless start with using the Genode OS
Framework. It explains the steps needed to get a simple demo system running
on Linux first, followed by the instructions on how to run the same scenario
on a microkernel.
Quick start to build Genode for Linux
#####################################
The best starting point for exploring Genode is to run it on Linux. Make sure
that your system satisfies the following requirements:
* GNU Make version 3.81 or newer
* 'libSDL-dev'
* 'tclsh' and 'expect'
* 'byacc' (only needed for the L4/Fiasco kernel)
* 'qemu' and 'xorriso' (for testing non-Linux platforms via Qemu)
For using the entire collection of ported 3rd-party software, the following
packages should be installed additionally: 'autoconf2.64', 'autogen', 'bison',
'flex', 'g++', 'git', 'gperf', 'libxml2-utils', 'subversion', and 'xsltproc'.
Your exploration of Genode starts with obtaining the source code of the
[https://sourceforge.net/projects/genode/files/latest/download - latest version]
of the framework. For detailed instructions and alternatives to the
download from Sourceforge please refer to [https://genode.org/download].
Furthermore, you will need to install the official Genode tool chain, which
you can download at [https://genode.org/download/tool-chain].
The Genode build system never touches the source tree but generates object
files, libraries, and programs in a dedicated build directory. We do not have a
build directory yet. For a quick start, let us create one for the Linux base
platform:
! cd <genode-dir>
! ./tool/create_builddir x86_64
This creates a new build directory for building x86_64 binaries in './build'.
The build system creates unified binaries that work on the given
architecture independent from the underlying base platform, in this case Linux.
To give Genode a try, build and execute a simple demo scenario via:
! cd build/x86_64
! make KERNEL=linux run/demo
By invoking 'make' with the 'run/demo' argument, all components needed by the
demo scenario are built and the demo is executed. This includes all components
which are implicitly needed by the base platform. The base platform that the
components will be executed upon on is selected via the 'KERNEL' variable. If
you are interested in looking behind the scenes of the demo scenario, please
refer to 'doc/build_system.txt' and the run script at 'os/run/demo.run'.
Using platforms other than Linux
================================
Running Genode on Linux is the most convenient way to get acquainted with the
framework. However, the point where Genode starts to shine is when used as the
user land executed on a microkernel. The framework supports a variety of
different kernels such as L4/Fiasco, L4ka::Pistachio, OKL4, and NOVA. Those
kernels largely differ in terms of feature sets, build systems, tools, and boot
concepts. To relieve you from dealing with those peculiarities, Genode provides
you with an unified way of using them. For each kernel platform, there exists
a dedicated description file that enables the 'prepare_port' tool to fetch and
prepare the designated 3rd-party sources. Just issue the following command
within the toplevel directory of the Genode source tree:
! ./tool/ports/prepare_port <platform>
Note that each 'base-<platform>' directory comes with a 'README' file, which
you should revisit first when exploring the base platform. Additionally, most
'base-<platform>' directories provide more in-depth information within their
respective 'doc/' subdirectories.
For the VESA driver on x86, the x86emu library is required and can be
downloaded and prepared by again invoking the 3rd-party sources preparation
tool:
! ./tool/ports/prepare_port x86emu
On x86 base platforms the GRUB2 boot loader is required and can be
downloaded and prepared by invoking:
! ./tool/ports/prepare_port grub2
Now that the base platform is prepared, the 'create_builddir' tool can be used
to create a build directory for your architecture of choice by giving the
architecture as argument. To see the list of available architecture, execute
'create_builddir' with no arguments. Note, that not all kernels support all
architectures.
For example, to give the demo scenario a spin on the OKL4 kernel, the following
steps are required:
# Download the kernel:
! cd <genode-dir>
! ./tool/ports/prepare_port okl4
# Create a build directory
! ./tool/create_builddir x86_32
# Uncomment the following line in 'x86_32/etc/build.conf'
! REPOSITORIES += $(GENODE_DIR)/repos/libports
# Build and execute the demo using Qemu
! make -C build/x86_32 KERNEL=okl4 run/demo
The procedure works analogously for the other base platforms. You can, however,
reuse the already created build directory and skip its creation step if the
architecture matches.
How to proceed with exploring Genode
####################################
Now that you have taken the first steps into using Genode, you may seek to
get more in-depth knowledge and practical experience. The foundation for doing
so is a basic understanding of the build system. The documentation at
'build_system.txt' provides you with the information about the layout of the
source tree, how new components are integrated, and how complete system
scenarios can be expressed. Equipped with this knowledge, it is time to get
hands-on experience with creating custom Genode components. A good start is the
'hello_tutorial', which shows you how to implement a simple client-server
scenario. To compose complex scenarios out of many small components, the
documentation of the Genode's configuration concept at 'os/doc/init.txt' is an
essential reference.
Certainly, you will have further questions on your way with exploring Genode.
The best place to get these questions answered is the Genode mailing list.
Please feel welcome to ask your questions and to join the discussions:
:Genode Mailing Lists:
[https://genode.org/community/mailing-lists]