genode/repos/os/run/cpu_quota.run
2016-12-14 11:22:27 +01:00

279 lines
7.7 KiB
Plaintext

#
# Check platform
#
# HW is the only kernel that provides appliance of quota to the scheduling.
#
assert_spec hw
#
# Build
#
build "core init drivers/timer test/cpu_quota"
#
# Boot image
#
create_boot_directory
install_config {
<config prio_levels="4">
<parent-provides>
<service name="ROM"/>
<service name="RAM"/>
<service name="IRQ"/>
<service name="IO_MEM"/>
<service name="IO_PORT"/>
<service name="PD"/>
<service name="RM"/>
<service name="CPU"/>
<service name="LOG"/>
</parent-provides>
<default-route>
<any-service><parent/><any-child/></any-service>
</default-route>
<start name="test-sync">
<resource name="RAM" quantum="10M"/>
<provides><service name="Sync"/></provides>
</start>
<start name="init_1" priority="-1">
<binary name="init"/>
<resource name="RAM" quantum="20M"/>
<resource name="CPU" quantum="10"/>
<config>
<parent-provides>
<service name="ROM"/>
<service name="RAM"/>
<service name="IRQ"/>
<service name="IO_MEM"/>
<service name="IO_PORT"/>
<service name="PD"/>
<service name="RM"/>
<service name="CPU"/>
<service name="LOG"/>
<service name="Timer"/>
<service name="Sync"/>
</parent-provides>
<default-route>
<any-service><parent/><any-child/></any-service>
</default-route>
<start name="test_slow">
<binary name="test-cpu_quota"/>
<resource name="RAM" quantum="10M"/>
<resource name="CPU" quantum="50"/>
</start>
</config>
</start>
<start name="init_2" priority="-2">
<binary name="init"/>
<resource name="RAM" quantum="30M"/>
<resource name="CPU" quantum="80"/>
<config prio_levels="2">
<parent-provides>
<service name="ROM"/>
<service name="RAM"/>
<service name="IRQ"/>
<service name="IO_MEM"/>
<service name="IO_PORT"/>
<service name="PD"/>
<service name="RM"/>
<service name="CPU"/>
<service name="LOG"/>
<service name="Timer"/>
<service name="Sync"/>
</parent-provides>
<default-route>
<any-service><parent/></any-service>
</default-route>
<start name="test_midl" priority="0">
<binary name="test-cpu_quota"/>
<resource name="RAM" quantum="10M"/>
<resource name="CPU" quantum="25"/>
</start>
<start name="test_fast" priority="-1">
<binary name="test-cpu_quota"/>
<resource name="RAM" quantum="10M"/>
<resource name="CPU" quantum="75"/>
</start>
</config>
</start>
<start name="timer" priority="0">
<resource name="RAM" quantum="10M"/>
<resource name="CPU" quantum="10"/>
<provides><service name="Timer"/></provides>
</start>
</config>
}
build_boot_image "core ld.lib.so init timer test-cpu_quota test-sync"
#
# Execution
#
append qemu_args "-nographic -m 128"
run_genode_until ".*done.*\n.*done.*\n.*done.*\n" 100
#
# Conclusion
#
set err_cnt 0
proc check_counter { name opt cnt total_cnt } {
global err_cnt
set bad 0
set class "Good: "
set tol 0.01
set is 0
#
# On X86, the timer driver uses the PIT with a maximum timeout of 54 ms.
# Thus, the driver frequently interrupts the counters with highest
# priority to update the timer. This is why we need a higher error
# tolerance as for ARM where the driver, once configured, can sleep for
# the whole test timeout.
#
if {[have_spec x86]} { set tol 0.02 }
#
# Zynq is currently tested merely in Qemu and most likely because of
# that, the results are less precise.
#
if {[have_spec zynq_qemu]} { set tol 0.03 }
#
# FIXME: There is no reasonable explanation by now why the test results
# are less stable on these platforms. We have tried several things that
# did not lead to an explanation or improvement:
#
# * changing the timing parameters of the scheduler
# * switching off SMP
# * double-checking the speed of userland and kernel timers
#
if {[have_spec hw_odroid_xu]} { set tol 0.04 }
if {[have_spec hw_arndale]} { set tol 0.04 }
if {[expr $total_cnt != 0]} { set is [expr double($cnt) / $total_cnt ] }
set err [expr $is - $opt]
set is_fmt [format {%0.3f} [expr $is * 100]]
set opt_fmt [format {%0.3f} [expr $opt * 100]]
set err_fmt [format {%0.3f} [expr $err * 100]]
set tol_fmt [format {%0.3f} [expr $tol * 100]]
if {[expr abs($err) > $tol]} {
set class "Bad: "
set err_cnt [expr $err_cnt + 1]
}
puts "$class$name received $is_fmt% CPU (goal $opt_fmt% tol $tol_fmt% err $err_fmt%)"
}
proc check_quota { name opt_sp quota_sp opt quota } {
global err_cnt
if {[expr $quota != $opt]} {
puts "Bad: $name has quota $quota us (goal $opt us)"
set err_cnt [expr $err_cnt + 1]
}
if {[expr $quota_sp != $opt_sp]} {
puts "Bad: $name has super period $quota_sp us (goal $opt_sp us)"
set err_cnt [expr $err_cnt + 1]
}
}
# pre-define variables if regexp does not match
set slow_quota ""; set midl_quota ""; set fast_quota ""
set slow_quota_sp ""; set midl_quota_sp ""; set fast_quota_sp ""
regexp {[0-9]+} [regexp -inline {slow. quota [0-9]+} $output] slow_quota
regexp {[0-9]+} [regexp -inline {midl. quota [0-9]+} $output] midl_quota
regexp {[0-9]+} [regexp -inline {fast. quota [0-9]+} $output] fast_quota
regexp {[0-9]+} [regexp -inline {slow. quota super period [0-9]+} $output] slow_quota_sp
regexp {[0-9]+} [regexp -inline {midl. quota super period [0-9]+} $output] midl_quota_sp
regexp {[0-9]+} [regexp -inline {fast. quota super period [0-9]+} $output] fast_quota_sp
#
# We have to consider the rounding errors as the two translations from init to
# core and then from core to the user are distinct.
#
# Slow quota (1000000 * (0x8000 * 5 / 100)) / 0x8000 = 49987
# Slow quota (1000000 * (0x8000 * 20 / 100)) / 0x8000 = 199981
# Slow quota (1000000 * (0x8000 * 60 / 100)) / 0x8000 = 599975
#
check_quota "Slow test" 1000000 $slow_quota_sp 49987 $slow_quota
check_quota "Middle test" 1000000 $midl_quota_sp 199981 $midl_quota
check_quota "Fast test" 1000000 $fast_quota_sp 599975 $fast_quota
regexp {[0-9]+} [regexp -inline {slow. counter A [0-9]+} $output] slow_a_cnt
regexp {[0-9]+} [regexp -inline {midl. counter A [0-9]+} $output] midl_a_cnt
regexp {[0-9]+} [regexp -inline {fast. counter A [0-9]+} $output] fast_a_cnt
regexp {[0-9]+} [regexp -inline {slow. counter B [0-9]+} $output] slow_b_cnt
regexp {[0-9]+} [regexp -inline {midl. counter B [0-9]+} $output] midl_b_cnt
regexp {[0-9]+} [regexp -inline {fast. counter B [0-9]+} $output] fast_b_cnt
set total_cnt [expr $fast_a_cnt + $midl_a_cnt + $slow_a_cnt + $fast_b_cnt + $midl_b_cnt + $slow_b_cnt]
#
# Slow 5.0 % claim + 5.0 % fill = 10 %
# Stage 1
# A 0.5 % claim + 2.5 % fill = 3 %
# B 4.5 % claim + 2.5 % fill = 7 %
# Stage 2
# A 5.0 % claim + 5.0 % fill = 10 %
# Total
# A 3/4 * 3 + 1/4 * 10 = 4.75 %
# A 3/4 * 7 + 1/4 * 0 = 5.25 %
#
check_counter "Slow counter A" 0.0475 $slow_a_cnt $total_cnt
check_counter "Slow counter B" 0.0525 $slow_b_cnt $total_cnt
#
# Middle 20 % claim + 5.0 % fill = 25.0 %
# Stage 1
# A 2 % claim + 2.5 % fill = 4.5 %
# B 18 % claim + 2.5 % fill = 20.5 %
# Stage 2
# A 20 % claim + 5.0 % fill = 25.0 %
# Total
# A 3/4 * 4.5 + 1/4 * 25 = 9.625 %
# A 3/4 * 20.5 + 1/4 * 0 = 15.375 %
#
check_counter "Middle counter A" 0.09625 $midl_a_cnt $total_cnt
check_counter "Middle counter B" 0.15375 $midl_b_cnt $total_cnt
#
# Fast 60 % claim + 5.0 % fill = 65.0 %
# Stage 1
# A 6 % claim + 2.5 % fill = 8.5 %
# B 54 % claim + 2.5 % fill = 56.5 %
# Stage 2
# A 60 % claim + 5.0 % fill = 65.0 %
# Total
# A 3/4 * 8.5 + 1/4 * 65 = 22.625 %
# A 3/4 * 56.5 + 1/4 * 0 = 42.375 %
#
check_counter "Fast counter A" 0.22625 $fast_a_cnt $total_cnt
check_counter "Fast counter B" 0.42375 $fast_b_cnt $total_cnt
# final conclusion and return
if {[expr $err_cnt > 0]} {
puts "Test failed because of $err_cnt errors"
exit -1
}
puts "Test succeeded"