Josef Söntgen caac994da8 lx_kit: decouple schedule execution
Prior to this commit, whenever an external event occurred, for example
timer or interrupt, the corresponding I/O signal handler was triggered.
This handler unblocked the task waiting for the event and initiated the
immediate execution of all unblocked tasks. Since these tasks may hit
serialization points, e.g. synchronously waiting for packet stream
operations, that require handling of other I/O signals this leads to
nested execution. This, however, is not supported and mixes application
and I/O level signal handling.

The flagging of the scheduling intent is now decoupled from its
execution by using an application level signal handler that is run in
the context of the components main entrypoint. The I/O signal handler
now triggers the scheduling execution by sending a local signal to
the EP.

Since it might be necessary to execute a pending schedule from the EP
directly the scheduler is extended with the 'execute' member function
that performs the check that the scheduler is called from within the
EP and triggers the execution afterwards.

Issue #4927.
2023-07-14 12:06:32 +02:00
..
2023-07-14 12:01:19 +02:00
2023-06-16 11:24:26 +02:00
2023-07-14 12:06:32 +02:00
2017-11-09 12:18:39 +01:00

Device drivers ported from the Linux kernel

USB
###

Host controller
~~~~~~~~~~~~~~~

The driver will start all USB controller types a platform offers.

Please consult repos/dde_linux/drivers/usb_host/README for a description.

HID
~~~

Please consult repos/dde_linux/drivers/usb_hid/README for a description.

Storage
~~~~~~~

Please consult repos/os/src/drivers/usb_block/README for a description.

Network (Nic)
~~~~~~~~~~~~~

Please consolut repos/dde_linux/src/drivers/usb_net/README for a description.

LXIP
####

LXIP is a port of the Linux TCP/IP stack to Genode. It is build as a shared
library named 'lxip.lib.so'. The IP stack can be interfaced using Genode's
version of 'libc' by linking your application to 'lxip_libc' plugin in your
'target.mk' file.

Wifi
####

The 'wifi_drv' consists of a port of the mac802.11 stack, platform-specific
drivers and the 'wpa_supplicant' to Genode.


lx_kit
######

The modular lx_kit seperates the required back end functionality of the Linux
emulation environment from the front end. Thereby each driver can reuse
specific parts or supply more suitable implementations by itself. It is used to
reduce the amount of redundant code in each driver.

The lx_kit is split into several layers whose structure is as follows:

The first layer in _repos/dde_linux/src/include/lx_emul_ contains those header
files that provide the structural definitions and function declarations of the
Linux API, e.g. _errno.h_ provides all error code values. The second layer in
_repos/dde_linux/src/include/lx_emul/impl_ contains the implementation of
selected functions, e.g. _slab.h_ provides the implementation of 'kmalloc()'.
The lx_kit back end API is the third layer and provides the _Lx::Malloc_
interface (_repos/dde_linux/src/include/lx_kit/malloc.h_) which is used to
implement 'kmalloc()'. There are several generic implementations of the lx_kit
interfaces that can be used by a driver.

A driver typically includes a 'lx_emul/impl/xyz.h' header once directly in its
lx_emul compilation unit. The lx_kit interface files are only included in those
compilation units that use or implement the interface. If a driver wants to use
a generic implementation it must add the source file to its source file list.
The generic implementations are located in _repos/dde_linux/src/lx_kit/_.

The modular lx_kit still depends on the private _lx_emul.h_ header file that is
tailored to each driver. Since the lx_kit already contains much of the
declarations and definitions that were originally placed in these private
header files, those files can now ommit a large amount of code.