genode/repos/base/include/pd_session/pd_session.h
Norman Feske e4f62380d7 base: Pd_session::dma_addr, Pd_session::attach_dma
This patch enhances the PD-session interface with the support needed for
user-level device drivers performing DMA. Both RPC functions are
intended for the direct use by the platform driver only. If invoked for
PDs that lack the managing-system role, the operations have no effect.

The 'dma_addr()' RPC function allows the platform driver to request the
DMA address of a given RAM dataspace. It is meant to replace the
'Dataspace::phys_addr' RPC function.

The 'attach_dma' RPC function adds the given dataspace to the device
PD's I/O page table. It replaces the former heuristics of marking DMA
buffers as uncached RAM on x86.

With this patch, the UNCACHED attribute of RAM dataspaces is no longer
used to distinguish DMA buffers from regular RAM dataspaces.

Issue #2243
2022-02-15 10:16:52 +01:00

412 lines
12 KiB
C++

/*
* \brief Protection domain (PD) session interface
* \author Christian Helmuth
* \author Norman Feske
* \date 2006-06-27
*/
/*
* Copyright (C) 2006-2017 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU Affero General Public License version 3.
*/
#ifndef _INCLUDE__PD_SESSION__PD_SESSION_H_
#define _INCLUDE__PD_SESSION__PD_SESSION_H_
#include <util/attempt.h>
#include <base/exception.h>
#include <cpu/cpu_state.h>
#include <session/session.h>
#include <region_map/region_map.h>
#include <base/ram_allocator.h>
namespace Genode {
struct Pd_session;
struct Pd_session_client;
struct Parent;
struct Signal_context;
}
struct Genode::Pd_session : Session, Ram_allocator
{
/**
* \noapi
*/
static const char *service_name() { return "PD"; }
/*
* A PD session consumes a dataspace capability for the session-object
* allocation, a capability for the 'Native_pd' RPC interface, its
* session capability, and the RPC capabilities for the 3 contained
* region maps.
*
* Furthermore, we account for the dataspace capabilities allocated during
* the component bootstrapping.
*/
enum { CAP_QUOTA = 6 + 7 };
typedef Pd_session_client Client;
virtual ~Pd_session() { }
/**
* Assign parent to protection domain
*
* \param parent capability of parent interface
*/
virtual void assign_parent(Capability<Parent> parent) = 0;
/**
* Assign PCI device to PD
*
* The specified address has to refer to the locally mapped PCI
* configuration space of the device.
*
* This function is solely used on the NOVA kernel.
*/
virtual bool assign_pci(addr_t pci_config_memory_address, uint16_t bdf) = 0;
/**
* Trigger eager insertion of page frames to page table within
* specified virtual range.
*
* If the used kernel don't support this feature, the operation will
* silently ignore the request.
*
* \param virt virtual address within the address space to start
* \param size the virtual size of the region
*
* \throw Out_of_ram
* \throw Out_of_caps
*/
virtual void map(addr_t virt, addr_t size) = 0;
/********************************
** Support for the signal API **
********************************/
typedef Capability<Signal_source> Signal_source_capability;
class Invalid_session : public Exception { };
class Undefined_ref_account : public Exception { };
class Invalid_signal_source : public Exception { };
/**
* Create a new signal source
*
* \return a cap that acts as reference to the created source
*
* The signal source provides an interface to wait for incoming signals.
*
* \throw Out_of_ram
* \throw Out_of_caps
*/
virtual Signal_source_capability alloc_signal_source() = 0;
/**
* Free a signal source
*
* \param cap capability of the signal source to destroy
*/
virtual void free_signal_source(Signal_source_capability cap) = 0;
/**
* Allocate signal context
*
* \param source signal source that shall provide the new context
*
*
* \param imprint opaque value that gets delivered with signals
* originating from the allocated signal-context capability
* \return new signal-context capability
*
* \throw Out_of_ram
* \throw Out_of_caps
* \throw Invalid_signal_source
*/
virtual Capability<Signal_context>
alloc_context(Signal_source_capability source, unsigned long imprint) = 0;
/**
* Free signal-context
*
* \param cap capability of signal-context to release
*/
virtual void free_context(Capability<Signal_context> cap) = 0;
/**
* Submit signals to the specified signal context
*
* \param context signal destination
* \param cnt number of signals to submit at once
*
* The 'context' argument does not necessarily belong to this PD session.
* Normally, it is a capability obtained from a potentially untrusted
* component. Because we cannot trust this capability, signals are not
* submitted by invoking 'cap' directly but by using it as argument to our
* trusted PD-session interface. Otherwise, a potential signal receiver
* could supply a capability with a blocking interface to compromise the
* nonblocking behaviour of the signal submission.
*/
virtual void submit(Capability<Signal_context> context, unsigned cnt = 1) = 0;
/***********************************
** Support for the RPC framework **
***********************************/
/**
* Allocate new RPC-object capability
*
* \param ep entry point that will use this capability
*
* \throw Out_of_ram if meta-data backing store is exhausted
* \throw Out_of_caps if 'cap_quota' is exceeded
*
* \return new RPC capability
*/
virtual Native_capability alloc_rpc_cap(Native_capability ep) = 0;
/**
* Free RPC-object capability
*
* \param cap capability to free
*/
virtual void free_rpc_cap(Native_capability cap) = 0;
/**************************************
** Virtual address-space management **
**************************************/
enum { LINKER_AREA_SIZE = 256*1024*1024UL };
/**
* Return region map of the PD's virtual address space
*/
virtual Capability<Region_map> address_space() = 0;
/**
* Return region map of the PD's stack area
*/
virtual Capability<Region_map> stack_area() = 0;
/**
* Return region map of the PD's linker area
*/
virtual Capability<Region_map> linker_area() = 0;
/*******************************************
** Accounting for capability allocations **
*******************************************/
/**
* Define reference account for the PD session
*
* \throw Invalid_session
*/
virtual void ref_account(Capability<Pd_session>) = 0;
/**
* Transfer capability quota to another PD session
*
* \param to receiver of quota donation
* \param amount amount of quota to donate
*
* \throw Out_of_caps
* \throw Invalid_session
* \throw Undefined_ref_account
*
* Quota can only be transfered if the specified PD session is either the
* reference account for this session or vice versa.
*/
virtual void transfer_quota(Capability<Pd_session> to, Cap_quota amount) = 0;
/**
* Return current capability-quota limit
*/
virtual Cap_quota cap_quota() const = 0;
/**
* Return number of capabilities allocated from the session
*/
virtual Cap_quota used_caps() const = 0;
/**
* Return amount of available capabilities
*/
Cap_quota avail_caps() const
{
return Cap_quota { cap_quota().value - used_caps().value };
}
/***********************************
** RAM allocation and accounting **
***********************************/
/*
* Note that the 'Pd_session' inherits the 'Ram_allocator' interface,
* which comprises the actual allocation and deallocation operations.
*/
/**
* Transfer quota to another RAM session
*
* \param to receiver of quota donation
* \param amount amount of quota to donate
*
* \throw Out_of_ram
* \throw Invalid_session
* \throw Undefined_ref_account
*
* Quota can only be transfered if the specified PD session is either the
* reference account for this session or vice versa.
*/
virtual void transfer_quota(Capability<Pd_session> to, Ram_quota amount) = 0;
/**
* Return current quota limit
*/
virtual Ram_quota ram_quota() const = 0;
/**
* Return used quota
*/
virtual Ram_quota used_ram() const = 0;
/**
* Return amount of available quota
*/
Ram_quota avail_ram() const { return { ram_quota().value - used_ram().value }; }
/*****************************************
** Access to kernel-specific interface **
*****************************************/
/**
* Common base class of kernel-specific PD interfaces
*/
struct Native_pd;
/**
* Return capability to kernel-specific PD operations
*/
virtual Capability<Native_pd> native_pd() = 0;
/*******************************************
** Access to system management interface **
*******************************************/
using Managing_system_state = Cpu_state;
/**
* Call privileged system management functionality of kernel or firmware
*/
virtual Managing_system_state managing_system(Managing_system_state const &) = 0;
/*******************************************
** Support for user-level device drivers **
*******************************************/
/**
* Return start address of the dataspace to be used for DMA transfers
*
* The intended use of this function is the use of RAM dataspaces as DMA
* buffers. On systems without IOMMU, device drivers need to know the
* physical address of DMA buffers for issuing DMA transfers.
*
* \return DMA address, or 0 if the dataspace is invalid or the
* PD lacks the permission to obtain the information
*/
virtual addr_t dma_addr(Ram_dataspace_capability) = 0;
enum class Attach_dma_error { OUT_OF_RAM, OUT_OF_CAPS, DENIED };
struct Attach_dma_ok { };
using Attach_dma_result = Attempt<Attach_dma_ok, Attach_dma_error>;
/**
* Attach dataspace to I/O page table at specified address 'at'
*
* This operation is preserved to privileged system-management components
* like the platform driver to assign DMA buffers to device protection
* domains. The attach can be reverted by using 'address_space().detach()'.
*/
virtual Attach_dma_result attach_dma(Dataspace_capability, addr_t at) = 0;
/*********************
** RPC declaration **
*********************/
GENODE_RPC(Rpc_assign_parent, void, assign_parent, Capability<Parent>);
GENODE_RPC(Rpc_assign_pci, bool, assign_pci, addr_t, uint16_t);
GENODE_RPC_THROW(Rpc_map, void, map,
GENODE_TYPE_LIST(Out_of_ram, Out_of_caps),
addr_t, addr_t);
GENODE_RPC_THROW(Rpc_alloc_signal_source, Signal_source_capability,
alloc_signal_source,
GENODE_TYPE_LIST(Out_of_ram, Out_of_caps));
GENODE_RPC(Rpc_free_signal_source, void, free_signal_source, Signal_source_capability);
GENODE_RPC_THROW(Rpc_alloc_context, Capability<Signal_context>, alloc_context,
GENODE_TYPE_LIST(Out_of_ram, Out_of_caps, Invalid_signal_source),
Signal_source_capability, unsigned long);
GENODE_RPC(Rpc_free_context, void, free_context,
Capability<Signal_context>);
GENODE_RPC(Rpc_submit, void, submit, Capability<Signal_context>, unsigned);
GENODE_RPC_THROW(Rpc_alloc_rpc_cap, Native_capability, alloc_rpc_cap,
GENODE_TYPE_LIST(Out_of_ram, Out_of_caps), Native_capability);
GENODE_RPC(Rpc_free_rpc_cap, void, free_rpc_cap, Native_capability);
GENODE_RPC(Rpc_address_space, Capability<Region_map>, address_space);
GENODE_RPC(Rpc_stack_area, Capability<Region_map>, stack_area);
GENODE_RPC(Rpc_linker_area, Capability<Region_map>, linker_area);
GENODE_RPC_THROW(Rpc_ref_account, void, ref_account,
GENODE_TYPE_LIST(Invalid_session), Capability<Pd_session>);
GENODE_RPC_THROW(Rpc_transfer_cap_quota, void, transfer_quota,
GENODE_TYPE_LIST(Out_of_caps, Invalid_session, Undefined_ref_account),
Capability<Pd_session>, Cap_quota);
GENODE_RPC(Rpc_cap_quota, Cap_quota, cap_quota);
GENODE_RPC(Rpc_used_caps, Cap_quota, used_caps);
GENODE_RPC(Rpc_try_alloc, Alloc_result, try_alloc, size_t, Cache);
GENODE_RPC(Rpc_free, void, free, Ram_dataspace_capability);
GENODE_RPC_THROW(Rpc_transfer_ram_quota, void, transfer_quota,
GENODE_TYPE_LIST(Out_of_ram, Invalid_session, Undefined_ref_account),
Capability<Pd_session>, Ram_quota);
GENODE_RPC(Rpc_ram_quota, Ram_quota, ram_quota);
GENODE_RPC(Rpc_used_ram, Ram_quota, used_ram);
GENODE_RPC(Rpc_native_pd, Capability<Native_pd>, native_pd);
GENODE_RPC(Rpc_managing_system, Managing_system_state, managing_system,
Managing_system_state const &);
GENODE_RPC(Rpc_dma_addr, addr_t, dma_addr, Ram_dataspace_capability);
GENODE_RPC(Rpc_attach_dma, Attach_dma_result, attach_dma,
Dataspace_capability, addr_t);
GENODE_RPC_INTERFACE(Rpc_assign_parent, Rpc_assign_pci, Rpc_map,
Rpc_alloc_signal_source, Rpc_free_signal_source,
Rpc_alloc_context, Rpc_free_context, Rpc_submit,
Rpc_alloc_rpc_cap, Rpc_free_rpc_cap, Rpc_address_space,
Rpc_stack_area, Rpc_linker_area, Rpc_ref_account,
Rpc_transfer_cap_quota, Rpc_cap_quota, Rpc_used_caps,
Rpc_try_alloc, Rpc_free,
Rpc_transfer_ram_quota, Rpc_ram_quota, Rpc_used_ram,
Rpc_native_pd, Rpc_managing_system,
Rpc_dma_addr, Rpc_attach_dma);
};
#endif /* _INCLUDE__PD_SESSION__PD_SESSION_H_ */