genode/repos/libports/src/lib/pthread/thread.cc
Norman Feske 7f73e5e879 base: hide internals of the Thread API
This patch moves details about the stack allocation and organization
the base-internal headers. Thereby, I replaced the notion of "thread
contexts" by "stacks" as this term is much more intuitive. The fact that
we place thread-specific information at the bottom of the stack is not
worth introducing new terminology.

Issue #1832
2016-03-07 12:34:46 +01:00

731 lines
14 KiB
C++

/*
* \brief POSIX thread implementation
* \author Christian Prochaska
* \date 2012-03-12
*
*/
/*
* Copyright (C) 2012-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#include <base/env.h>
#include <base/printf.h>
#include <base/sleep.h>
#include <base/thread.h>
#include <os/timed_semaphore.h>
#include <util/list.h>
#include <errno.h>
#include <pthread.h>
#include "thread.h"
using namespace Genode;
/*
* Structure to handle self-destructing pthreads.
*/
struct thread_cleanup : List<thread_cleanup>::Element
{
pthread_t thread;
thread_cleanup(pthread_t t) : thread(t) { }
~thread_cleanup() {
if (thread)
destroy(env()->heap(), thread);
}
};
static Lock pthread_cleanup_list_lock;
static List<thread_cleanup> pthread_cleanup_list;
/*
* We initialize the main-thread pointer in a constructor depending on the
* assumption that libpthread is loaded on application startup by ldso. During
* this stage only the main thread is executed.
*/
static __attribute__((constructor)) Thread_base * main_thread()
{
static Thread_base *thread = Thread_base::myself();
return thread;
}
extern "C" {
/* Thread */
int pthread_attr_init(pthread_attr_t *attr)
{
if (!attr)
return EINVAL;
*attr = new (env()->heap()) pthread_attr;
return 0;
}
int pthread_attr_destroy(pthread_attr_t *attr)
{
if (!attr || !*attr)
return EINVAL;
destroy(env()->heap(), *attr);
*attr = 0;
return 0;
}
void pthread_cleanup()
{
{
Lock_guard<Lock> lock_guard(pthread_cleanup_list_lock);
while (thread_cleanup * t = pthread_cleanup_list.first()) {
pthread_cleanup_list.remove(t);
destroy(env()->heap(), t);
}
}
}
int pthread_cancel(pthread_t thread)
{
/* cleanup threads which tried to self-destruct */
pthread_cleanup();
if (pthread_equal(pthread_self(), thread)) {
Lock_guard<Lock> lock_guard(pthread_cleanup_list_lock);
pthread_cleanup_list.insert(new (env()->heap()) thread_cleanup(thread));
} else
destroy(env()->heap(), thread);
return 0;
}
void pthread_exit(void *value_ptr)
{
pthread_cancel(pthread_self());
sleep_forever();
}
/* special non-POSIX function (for example used in libresolv) */
int _pthread_main_np(void)
{
return (Thread_base::myself() == main_thread());
}
pthread_t pthread_self(void)
{
Thread_base *myself = Thread_base::myself();
pthread_t pthread = dynamic_cast<pthread_t>(myself);
if (pthread)
return pthread;
/*
* We pass here if the main thread or an alien thread calls
* pthread_self(). So check for aliens (or other bugs) and opt-out
* early.
*/
if (!_pthread_main_np()) {
char name[64];
myself->name(name, sizeof(name));
PERR("pthread_self() called from alien thread named '%s'", name);
return nullptr;
}
/*
* We create a pthread object containing a copy of main thread's
* Thread_base object. Therefore, we ensure the pthread object does not
* get deleted by allocating it in heap via new(). Otherwise, the
* static destruction of the pthread object would also destruct the
* 'Thread_base' of the main thread.
*/
static struct pthread_attr main_thread_attr;
static struct pthread *main = new (Genode::env()->heap())
struct pthread(*myself, &main_thread_attr);
return main;
}
int pthread_attr_getstack(const pthread_attr_t *attr,
void **stackaddr,
size_t *stacksize)
{
/* FIXME */
PWRN("pthread_attr_getstack() called, might not work correctly");
if (!attr || !*attr || !stackaddr || !stacksize)
return EINVAL;
pthread_t pthread = (*attr)->pthread;
*stackaddr = pthread->stack_top();
*stacksize = (addr_t)pthread->stack_top() - (addr_t)pthread->stack_base();
return 0;
}
int pthread_attr_get_np(pthread_t pthread, pthread_attr_t *attr)
{
if (!attr)
return EINVAL;
*attr = pthread->_attr;
return 0;
}
int pthread_equal(pthread_t t1, pthread_t t2)
{
return (t1 == t2);
}
/* Mutex */
struct pthread_mutex_attr
{
int type;
pthread_mutex_attr() : type(PTHREAD_MUTEX_NORMAL) { }
};
struct pthread_mutex
{
pthread_mutex_attr mutexattr;
Lock mutex_lock;
pthread_t owner;
int lock_count;
Lock owner_and_counter_lock;
pthread_mutex(const pthread_mutexattr_t *__restrict attr)
: owner(0),
lock_count(0)
{
if (attr && *attr)
mutexattr = **attr;
}
int lock()
{
if (mutexattr.type == PTHREAD_MUTEX_RECURSIVE) {
Lock::Guard lock_guard(owner_and_counter_lock);
if (lock_count == 0) {
owner = pthread_self();
lock_count++;
mutex_lock.lock();
return 0;
}
/* the mutex is already locked */
if (pthread_self() == owner) {
lock_count++;
return 0;
} else {
mutex_lock.lock();
return 0;
}
}
if (mutexattr.type == PTHREAD_MUTEX_ERRORCHECK) {
Lock::Guard lock_guard(owner_and_counter_lock);
if (lock_count == 0) {
owner = pthread_self();
mutex_lock.lock();
return 0;
}
/* the mutex is already locked */
if (pthread_self() != owner) {
mutex_lock.lock();
return 0;
} else
return EDEADLK;
}
/* PTHREAD_MUTEX_NORMAL or PTHREAD_MUTEX_DEFAULT */
mutex_lock.lock();
return 0;
}
int unlock()
{
if (mutexattr.type == PTHREAD_MUTEX_RECURSIVE) {
Lock::Guard lock_guard(owner_and_counter_lock);
if (pthread_self() != owner)
return EPERM;
lock_count--;
if (lock_count == 0) {
owner = 0;
mutex_lock.unlock();
}
return 0;
}
if (mutexattr.type == PTHREAD_MUTEX_ERRORCHECK) {
Lock::Guard lock_guard(owner_and_counter_lock);
if (pthread_self() != owner)
return EPERM;
owner = 0;
mutex_lock.unlock();
return 0;
}
/* PTHREAD_MUTEX_NORMAL or PTHREAD_MUTEX_DEFAULT */
mutex_lock.unlock();
return 0;
}
};
int pthread_mutexattr_init(pthread_mutexattr_t *attr)
{
if (!attr)
return EINVAL;
*attr = new (env()->heap()) pthread_mutex_attr;
return 0;
}
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr)
{
if (!attr || !*attr)
return EINVAL;
destroy(env()->heap(), *attr);
*attr = 0;
return 0;
}
int pthread_mutexattr_settype(pthread_mutexattr_t *attr, int type)
{
if (!attr || !*attr)
return EINVAL;
(*attr)->type = type;
return 0;
}
int pthread_mutex_init(pthread_mutex_t *__restrict mutex,
const pthread_mutexattr_t *__restrict attr)
{
if (!mutex)
return EINVAL;
*mutex = new (env()->heap()) pthread_mutex(attr);
return 0;
}
int pthread_mutex_destroy(pthread_mutex_t *mutex)
{
if ((!mutex) || (*mutex == PTHREAD_MUTEX_INITIALIZER))
return EINVAL;
destroy(env()->heap(), *mutex);
*mutex = PTHREAD_MUTEX_INITIALIZER;
return 0;
}
int pthread_mutex_lock(pthread_mutex_t *mutex)
{
if (!mutex)
return EINVAL;
if (*mutex == PTHREAD_MUTEX_INITIALIZER)
pthread_mutex_init(mutex, 0);
(*mutex)->lock();
return 0;
}
int pthread_mutex_unlock(pthread_mutex_t *mutex)
{
if (!mutex)
return EINVAL;
if (*mutex == PTHREAD_MUTEX_INITIALIZER)
pthread_mutex_init(mutex, 0);
(*mutex)->unlock();
return 0;
}
/* Condition variable */
/*
* Implementation based on
* http://web.archive.org/web/20010914175514/http://www-classic.be.com/aboutbe/benewsletter/volume_III/Issue40.html#Workshop
*/
struct pthread_cond
{
int num_waiters;
int num_signallers;
Lock counter_lock;
Timed_semaphore signal_sem;
Semaphore handshake_sem;
pthread_cond() : num_waiters(0), num_signallers(0) { }
};
int pthread_condattr_init(pthread_condattr_t *attr)
{
if (!attr)
return EINVAL;
*attr = 0;
return 0;
}
int pthread_condattr_destroy(pthread_condattr_t *attr)
{
if (!attr || !*attr)
return EINVAL;
PDBG("not implemented yet");
return 0;
}
int pthread_condattr_setclock(pthread_condattr_t *attr,
clockid_t clock_id)
{
if (!attr || !*attr)
return EINVAL;
PDBG("not implemented yet");
return 0;
}
int pthread_cond_init(pthread_cond_t *__restrict cond,
const pthread_condattr_t *__restrict attr)
{
if (!cond)
return EINVAL;
*cond = new (env()->heap()) pthread_cond;
return 0;
}
int pthread_cond_destroy(pthread_cond_t *cond)
{
if (!cond || !*cond)
return EINVAL;
destroy(env()->heap(), *cond);
*cond = 0;
return 0;
}
static unsigned long timespec_to_ms(const struct timespec ts)
{
return (ts.tv_sec * 1000) + (ts.tv_nsec / (1000 * 1000));
}
int pthread_cond_timedwait(pthread_cond_t *__restrict cond,
pthread_mutex_t *__restrict mutex,
const struct timespec *__restrict abstime)
{
int result = 0;
Alarm::Time timeout = 0;
if (!cond || !*cond)
return EINVAL;
pthread_cond *c = *cond;
c->counter_lock.lock();
c->num_waiters++;
c->counter_lock.unlock();
pthread_mutex_unlock(mutex);
if (!abstime)
c->signal_sem.down();
else {
struct timespec currtime;
clock_gettime(CLOCK_REALTIME, &currtime);
unsigned long abstime_ms = timespec_to_ms(*abstime);
unsigned long currtime_ms = timespec_to_ms(currtime);
if (abstime_ms > currtime_ms)
timeout = abstime_ms - currtime_ms;
try {
c->signal_sem.down(timeout);
} catch (Timeout_exception) {
result = ETIMEDOUT;
} catch (Genode::Nonblocking_exception) {
errno = ETIMEDOUT;
result = ETIMEDOUT;
}
}
c->counter_lock.lock();
if (c->num_signallers > 0) {
if (result == ETIMEDOUT) /* timeout occured */
c->signal_sem.down();
c->handshake_sem.up();
--c->num_signallers;
}
c->num_waiters--;
c->counter_lock.unlock();
pthread_mutex_lock(mutex);
return result;
}
int pthread_cond_wait(pthread_cond_t *__restrict cond,
pthread_mutex_t *__restrict mutex)
{
return pthread_cond_timedwait(cond, mutex, 0);
}
int pthread_cond_signal(pthread_cond_t *cond)
{
if (!cond || !*cond)
return EINVAL;
pthread_cond *c = *cond;
c->counter_lock.lock();
if (c->num_waiters > c->num_signallers) {
++c->num_signallers;
c->signal_sem.up();
c->counter_lock.unlock();
c->handshake_sem.down();
} else
c->counter_lock.unlock();
return 0;
}
int pthread_cond_broadcast(pthread_cond_t *cond)
{
if (!cond || !*cond)
return EINVAL;
pthread_cond *c = *cond;
c->counter_lock.lock();
if (c->num_waiters > c->num_signallers) {
int still_waiting = c->num_waiters - c->num_signallers;
c->num_signallers = c->num_waiters;
for (int i = 0; i < still_waiting; i++)
c->signal_sem.up();
c->counter_lock.unlock();
for (int i = 0; i < still_waiting; i++)
c->handshake_sem.down();
} else
c->counter_lock.unlock();
return 0;
}
/* TLS */
struct Key_element : List<Key_element>::Element
{
const void *thread_base;
const void *value;
Key_element(const void *thread_base, const void *value)
: thread_base(thread_base),
value(value) { }
};
static Lock key_list_lock;
List<Key_element> key_list[PTHREAD_KEYS_MAX];
int pthread_key_create(pthread_key_t *key, void (*destructor)(void*))
{
if (!key)
return EINVAL;
Lock_guard<Lock> key_list_lock_guard(key_list_lock);
for (int k = 0; k < PTHREAD_KEYS_MAX; k++) {
/*
* Find an empty key slot and insert an element for the current
* thread to mark the key slot as used.
*/
if (!key_list[k].first()) {
Key_element *key_element = new (env()->heap()) Key_element(Thread_base::myself(), 0);
key_list[k].insert(key_element);
*key = k;
return 0;
}
}
return EAGAIN;
}
int pthread_key_delete(pthread_key_t key)
{
if (key < 0 || key >= PTHREAD_KEYS_MAX || !key_list[key].first())
return EINVAL;
Lock_guard<Lock> key_list_lock_guard(key_list_lock);
while (Key_element * element = key_list[key].first()) {
key_list[key].remove(element);
destroy(env()->heap(), element);
}
return 0;
}
int pthread_setspecific(pthread_key_t key, const void *value)
{
if (key < 0 || key >= PTHREAD_KEYS_MAX)
return EINVAL;
void *myself = Thread_base::myself();
Lock_guard<Lock> key_list_lock_guard(key_list_lock);
for (Key_element *key_element = key_list[key].first(); key_element;
key_element = key_element->next())
if (key_element->thread_base == myself) {
key_element->value = value;
return 0;
}
/* key element does not exist yet - create a new one */
Key_element *key_element = new (env()->heap()) Key_element(Thread_base::myself(), value);
key_list[key].insert(key_element);
return 0;
}
void *pthread_getspecific(pthread_key_t key)
{
if (key < 0 || key >= PTHREAD_KEYS_MAX)
return nullptr;
void *myself = Thread_base::myself();
Lock_guard<Lock> key_list_lock_guard(key_list_lock);
for (Key_element *key_element = key_list[key].first(); key_element;
key_element = key_element->next())
if (key_element->thread_base == myself)
return (void*)(key_element->value);
return 0;
}
int pthread_once(pthread_once_t *once, void (*init_once)(void))
{
if (!once || ((once->state != PTHREAD_NEEDS_INIT) &&
(once->state != PTHREAD_DONE_INIT)))
return EINTR;
if (!once->mutex) {
pthread_mutex_t p = new (env()->heap()) pthread_mutex(0);
/* be paranoid */
if (!p)
return EINTR;
static Lock lock;
lock.lock();
if (!once->mutex) {
once->mutex = p;
p = nullptr;
}
lock.unlock();
/*
* If another thread concurrently allocated a mutex and was faster,
* free our mutex since it is not used.
*/
if (p)
destroy(env()->heap(), p);
}
once->mutex->lock();
if (once->state == PTHREAD_DONE_INIT) {
once->mutex->unlock();
return 0;
}
init_once();
once->state = PTHREAD_DONE_INIT;
once->mutex->unlock();
return 0;
}
}