genode/repos/base/include/base/allocator_avl.h
2024-07-02 12:00:11 +02:00

441 lines
12 KiB
C++

/*
* \brief Interface of AVL-tree-based allocator
* \author Norman Feske
* \date 2006-04-16
*/
/*
* Copyright (C) 2006-2017 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU Affero General Public License version 3.
*/
#ifndef _INCLUDE__BASE__ALLOCATOR_AVL_H_
#define _INCLUDE__BASE__ALLOCATOR_AVL_H_
#include <base/allocator.h>
#include <base/tslab.h>
#include <base/output.h>
#include <util/avl_tree.h>
#include <util/misc_math.h>
#include <util/construct_at.h>
namespace Genode {
class Allocator_avl_base;
/*
* The default slab block size is dimensioned such that slab-block
* allocations make effective use of entire memory pages. To account for
* the common pattern of using a 'Sliced_heap' as backing store for the
* 'Allocator_avl'. We remove 8 words from the slab-block size to take the
* meta-data overhead of each sliced-heap block into account.
*/
template <typename, unsigned SLAB_BLOCK_SIZE = (1024 - 8)*sizeof(addr_t)>
class Allocator_avl_tpl;
/**
* Define AVL-based allocator without any meta data attached to each block
*/
class Empty { };
using Allocator_avl = Allocator_avl_tpl<Empty>;
}
class Genode::Allocator_avl_base : public Range_allocator
{
public:
enum class Size_at_error {
UNKNOWN_ADDR, /* no allocation at specified address */
MISMATCHING_ADDR, /* specified address is not the start of a block */
};
using Size_at_result = Attempt<size_t, Size_at_error>;
private:
static bool _sum_in_range(addr_t addr, addr_t offset) {
return (addr + offset - 1) >= addr; }
/*
* Noncopyable
*/
Allocator_avl_base(Allocator_avl_base const &);
Allocator_avl_base &operator = (Allocator_avl_base const &);
protected:
class Block : public Avl_node<Block>
{
private:
addr_t _addr { 0 }; /* base address */
size_t _size { 0 }; /* size of block */
bool _used { false }; /* block is in use */
size_t _max_avail { 0 }; /* biggest free block size of
sub tree */
/**
* Request max_avail value of subtree
*/
inline size_t _child_max_avail(bool side) {
return child(side) ? child(side)->max_avail() : 0; }
/**
* Query if block can hold a specified subblock
*
* \param n number of bytes
* \param range address constraint of subblock
* \param align alignment (power of two)
* \return true if block fits
*/
inline bool _fits(size_t n, unsigned align, Range range)
{
addr_t a = align_addr(max(addr(), range.start), align);
return (a >= addr()) && _sum_in_range(a, n) &&
(a - addr() + n <= avail()) && (a + n - 1 <= range.end);
}
/*
* Noncopyable
*/
Block(Block const &);
Block &operator = (Block const &);
public:
/**
* Avl_node interface: compare two nodes
*/
bool higher(Block *a) {
return a->_addr >= _addr; }
/**
* Avl_node interface: update meta data on node rearrangement
*/
void recompute();
/*****************
** Accessorors **
*****************/
inline addr_t addr() const { return _addr; }
inline size_t avail() const { return _used ? 0 : _size; }
inline size_t size() const { return _size; }
inline bool used() const { return _used; }
inline size_t max_avail() const { return _max_avail; }
inline void used(bool used) { _used = used; }
enum { FREE = false, USED = true };
/**
* Constructor
*
* This constructor is called from meta-data allocator during
* initialization of new meta-data blocks.
*/
Block();
/**
* Constructor
*/
Block(addr_t addr, size_t size, bool used)
:
_addr(addr), _size(size), _used(used), _max_avail(used ? 0 : size)
{ }
/**
* Find best-fitting block
*/
Block *find_best_fit(size_t size, unsigned align, Range);
/**
* Find block that contains the specified address range
*/
Block *find_by_address(addr_t addr, size_t size = 0,
bool check_overlap = 0);
/**
* Return sum of available memory in subtree
*/
size_t avail_in_subtree(void);
};
private:
Avl_tree<Block> _addr_tree { }; /* blocks sorted by base address */
Allocator &_md_alloc; /* meta-data allocator */
size_t _md_entry_size { 0 }; /* size of block meta-data entry */
struct Two_blocks { Block *b1_ptr, *b2_ptr; };
using Alloc_md_result = Attempt<Block *, Alloc_error>;
using Alloc_md_two_result = Attempt<Two_blocks, Alloc_error>;
/**
* Alloc meta-data block
*/
Alloc_md_result _alloc_block_metadata();
/**
* Alloc two meta-data blocks in a transactional way
*/
Alloc_md_two_result _alloc_two_blocks_metadata();
/**
* Create new block
*/
void _add_block(Block &block_metadata, addr_t base, size_t size, bool used);
Block *_find_any_used_block(Block *sub_tree);
Block *_find_any_unused_block(Block *sub_tree);
/**
* Destroy block
*/
void _destroy_block(Block &b);
/**
* Cut specified area from block
*
* The original block gets replaced by (up to) two smaller blocks
* with remaining space.
*/
void _cut_from_block(Block &b, addr_t cut_addr, size_t cut_size, Two_blocks);
bool _revert_block_ranges(auto const &any_block_fn);
Alloc_result _allocate(size_t, unsigned, Range, auto const &search_fn);
protected:
Avl_tree<Block> const & _block_tree() const { return _addr_tree; }
/**
* Clean up the allocator and detect dangling allocations
*
* This method is called at the destruction time of the allocator. It
* makes sure that the allocator instance releases all memory obtained
* from the meta-data allocator.
*/
void _revert_allocations_and_ranges();
bool _revert_unused_ranges();
/**
* Find block by specified address
*/
Block *_find_by_address(addr_t addr, size_t size = 0,
bool check_overlap = 0) const
{
Block *b = static_cast<Block *>(_addr_tree.first());
/* if the tree has one or more nodes, start search */
return b ? b->find_by_address(addr, size, check_overlap) : 0;
}
/**
* Constructor
*
* This constructor can only be called from a derived class that
* provides an allocator for block meta-data entries. This way,
* we can attach custom information to block meta data.
*/
Allocator_avl_base(Allocator *md_alloc, size_t md_entry_size) :
_md_alloc(*md_alloc), _md_entry_size(md_entry_size) { }
~Allocator_avl_base() { _revert_allocations_and_ranges(); }
public:
/**
* Return address of any block of the allocator
*
* \param out_addr result that contains address of block
* \return true if block was found or
* false if there is no block available
*
* If no block was found, out_addr is set to zero.
*/
bool any_block_addr(addr_t *out_addr);
void print(Output &out) const;
/*******************************
** Range allocator interface **
*******************************/
Range_result add_range(addr_t base, size_t size) override;
Range_result remove_range(addr_t base, size_t size) override;
Alloc_result alloc_aligned(size_t, unsigned, Range) override;
Alloc_result alloc_addr(size_t size, addr_t addr) override;
void free(void *addr) override;
size_t avail() const override;
bool valid_addr(addr_t addr) const override;
using Range_allocator::alloc_aligned; /* import overloads */
/*************************
** Allocator interface **
*************************/
Alloc_result try_alloc(size_t size) override
{
return Allocator_avl_base::alloc_aligned(size, (unsigned)log2(sizeof(addr_t)));
}
void free(void *addr, size_t) override { free(addr); }
/**
* Return size of block at specified address
*/
Size_at_result size_at(void const *addr) const;
/**
* Return the memory overhead per Block
*
* The overhead is a rough estimation. If a block is somewhere
* in the middle of a free area, we could consider the meta data
* for the two free subareas when calculating the overhead.
*
* The 'sizeof(umword_t)' represents the overhead of the meta-data
* slab allocator.
*/
size_t overhead(size_t) const override { return sizeof(Block) + sizeof(umword_t); }
bool need_size_for_free() const override { return false; }
};
/**
* AVL-based allocator with custom meta data attached to each block.
*
* \param BMDT block meta-data type
*/
template <typename BMDT, unsigned SLAB_BLOCK_SIZE>
class Genode::Allocator_avl_tpl : public Allocator_avl_base
{
protected:
/*
* Pump up the Block class with custom meta-data type
*/
class Block : public Allocator_avl_base::Block, public BMDT { };
Tslab<Block,SLAB_BLOCK_SIZE> _metadata; /* meta-data allocator */
char _initial_md_block[SLAB_BLOCK_SIZE]; /* first (static) meta-data block */
public:
struct Assign_metadata_failed : Exception { };
/**
* Constructor
*
* \param metadata_chunk_alloc pointer to allocator used to allocate
* meta-data blocks. If set to 0,
* use ourself for allocating our
* meta-data blocks. This works only
* if the managed memory is completely
* accessible by the allocator.
*/
explicit Allocator_avl_tpl(Allocator *metadata_chunk_alloc) :
Allocator_avl_base(&_metadata, sizeof(Block)),
_metadata((metadata_chunk_alloc) ? metadata_chunk_alloc : this,
(Block *)&_initial_md_block) { }
~Allocator_avl_tpl()
{
_revert_unused_ranges();
/*
* The release of empty blocks may add unused ranges (formerly used
* by metadata). Thus, we loop until all empty blocks are freed and
* no additional unused ranges appear.
*/
do {
_metadata.free_empty_blocks();
} while (_revert_unused_ranges());
_revert_allocations_and_ranges();
}
/**
* Return size of slab blocks used for meta data
*/
static constexpr size_t slab_block_size() { return SLAB_BLOCK_SIZE; }
/**
* Assign custom meta data to block at specified address
*
* \throw Assign_metadata_failed
*/
void metadata(void *addr, BMDT bmd) const
{
Block * const b = static_cast<Block *>(_find_by_address((addr_t)addr));
if (b) *static_cast<BMDT *>(b) = bmd;
else throw Assign_metadata_failed();
}
/**
* Construct meta-data object in place
*
* \param args arguments passed to the meta-data constuctor
*/
void construct_metadata(void *addr, auto &&... args)
{
Block * const b = static_cast<Block *>(_find_by_address((addr_t)addr));
if (b) construct_at<BMDT>(static_cast<BMDT *>(b), args...);
else throw Assign_metadata_failed();
}
/**
* Return meta data that was attached to block at specified address
*/
BMDT* metadata(void *addr) const
{
Block *b = static_cast<Block *>(_find_by_address((addr_t)addr));
return b && b->used() ? b : 0;
}
Range_result add_range(addr_t base, size_t size) override
{
/*
* We disable the slab block allocation while
* processing add_range to prevent avalanche
* effects when (slab trying to make an allocation
* at Allocator_avl that is empty).
*/
Allocator *md_bs = _metadata.backing_store();
_metadata.backing_store(0);
Range_result result = Allocator_avl_base::add_range(base, size);
_metadata.backing_store(md_bs);
return result;
}
/**
* Apply functor 'fn' to the metadata of an arbitrary
* member of the allocator. This method is provided for
* destructing each member of the allocator. Calling
* the method repeatedly without removing or inserting
* members will produce the same member.
*/
bool apply_any(auto const &fn)
{
addr_t addr = 0;
if (any_block_addr(&addr)) {
if (BMDT *b = metadata((void*)addr)) {
fn((BMDT&)*b);
return true;
}
}
return false;
}
};
#endif /* _INCLUDE__BASE__ALLOCATOR_AVL_H_ */