Martin Stein ad059362d2 base-hw: reduce hardware-specific include paths
For base-hw Core, we used to add quite some hardware-specific include paths
to 'INC_DIR'. Generic code used to include, for instance, '<cpu.h>' and
'<translation_table.h>' using these implicit path resolutions. This commit
removes hardware-specific include paths except for

1) the '<board.h>' include paths (e.g., 'src/core/board/pbxa9'),
2) most architecture-specific include paths (e.g., 'src/core/spec/arm_v7'),
3) include paths that reflect usage of virtualization or ARM Trustzone
   (e.g., 'src/core/spec/arm/virtualization').

The first category is kept because, in contrast to the former "spec"-mechanism,
the board variable used for this type of resolution is not deprecated and the
board headers are meant to be the front end of hardware-specific headers
towards generic code which is why they must be available generically via
'<board.h>'.

The second category is kept because it was suggested by other maintainers that
simple arch-dependent headers (like for the declaration of a CPU state) should
not imply the inclusion of the whole '<board.h>' and because the architecture
is given also without the former "spec"-mechanism through the type of the build
directory. I think this is questionable but am fine with it.

The third category is kept because the whole way of saying whether
virtualization resp. ARM Trustzone is used is done in an out-dated manner and
changing it now would blow up this commit a lot and exceed the time that I'm
willing to spend. This category should be subject to a future issue.

Ref #4217
2021-10-13 14:46:53 +02:00
..
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-10-13 14:46:52 +02:00
2021-10-13 14:01:02 +02:00

                      ===============================
                      Genode source-code repositories
                      ===============================


This directory contains the source-code repositories of the Genode OS
Framework. Each sub directory has the same principle layout as described in the
build-system manual:

:Build-system manual:

  [https://genode.org/documentation/developer-resources/build_system]

The build system uses a configurable selection of those reposities to obtain
the source codes for the build process. The repositories are not independent
but build upon of each other:

:'base':

  This directory contains the source-code repository of the fundamental
  frameworks and interfaces of Genode. Furthermore, it contains the generic
  parts of core.

:'base-<platform>':
  These directories contain platform-specific source-code repositories
  complementing the 'base' repository. The following platforms are supported:

  :'linux':
    Linux kernel (both x86_32 and x86_64)

  :'nova':
    NOVA hypervisor developed at University of Technology Dresden

  :'foc':
    Fiasco.OC is a modernized version of the Fiasco microkernel with a
    completely revised kernel interface fostering capability-based
    security. It is not compatible with L4/Fiasco.

  :'hw':
    The hw platform allows the execution of Genode on bare ARM and x86 hardware
    without the need for a separate kernel. The kernel functionality is
    included in core.

  :'okl4':
    OKL4 kernel (x86_32 and ARM) developed at Open-Kernel-Labs.

  :'pistachio':
    L4ka::Pistachio kernel developed at University of Karlsruhe.

  :'fiasco':
    L4/Fiasco kernel developed at University of Technology Dresden.

  :'sel4':
    seL4 microkernel developed at NICTA/General Dynamics
    See[https://sel4.systems/]

:'os':

  This directory contains the non-base OS components such as the init process,
  device drivers, and basic system services.

:'demo':

  This directory contains the source-code repository of various services and
  applications that we use for demonstration purposes. For example, a graphical
  application launcher called Launchpad and the Scout tutorial browser.

:'hello_tutorial':

  Tutorial for creating a simple client-server scenario with Genode. This
  repository includes documentation and the complete source code.

:'libports':

  This source-code repository contains ports of popular open-source libraries
  to Genode, most importantly the C library. The repository contains no
  upstream source code but means to download the code and adapt it to Genode.
  For instructions about how to use this mechanism, please consult the README
  file at the top level of the repository. Among the 3rd-party libraries
  are Qt5, libSDL, freetype, Python, ncurses, Mesa, and libav.

:'dde_linux':

  This source-code repository contains the device driver environment for
  executing Linux device drivers natively on Genode. Currently, this
  repository hosts the USB stack.

:'dde_ipxe':

  This source-code repository contains the device-driver environment for
  executing drivers of the iPXE project.

:'dde_bsd':

  This source-code repository contains the device-driver environment for
  drivers of the OpenBSD operating system.

:'dde_rump':

  This source-code repository contains the port of rump kernels, which are
  used to execute subsystems of the NetBSD kernel as user level processes.
  The repository contains a server that uses a rump kernel to provide
  various NetBSD file systems to Genode.

:'ports':

  This source-code repository hosts ports of 3rd-party applications to
  Genode. The repository does not contain upstream source code but provides
  a mechanism for downloading the official source distributions and adapt
  them to the Genode environment. The used mechanism is roughly the same
  as used for the 'libports' repository. Please consult 'libports/README'
  for further information.

:'gems':

  This source-code repository contains Genode applications that use
  both native Genode interfaces as well as features of other high-level
  repositories, in particular shared libraries provided by 'libports'.