Piotr Tworek 880cd3a490 virtio_nic: Fix packet transmission handling.
The problem can be seen when running nic_router_flood scenarion on arm
qemu_virt boards. With the amount of data this scenario tries to send
the driver quickly complains it has failed to push data into TX VirtIO
queue. After this warning message is printed nothing really happens and
after a while the test scenario fails.

The fact that we can't write all available data to the device is not
unexpected. VirtIO queue size is slected at initialization time and we
don't change it during driver lifetime. It can be tweaked via driver
config, but this does not change the fact that we'll always be able to
produce more data packets than we have free space in the VirtIO queue.

IMO the expected behavior of the driver in such case should be to:
1. Notify the device there is data to process.
2. Wait for the device to process at least part of it.
3. Retry sending queued packets.

One could expect returning Transmit_result::RETRY from _drv_transmit_pkt
would produce such result. Unfortunately it seems that Uplink_client_base
treats RETRY return value as indication of link being down. It'll retry
sending the packet only after the device notifies it the link is once
again up. This is the reason why nothing happens when running
nic_router_flood on top of virtio_nic driver. The link never goes down
in this case so once we fill the TX VirtIO queue and tell the base class
to retry the send, we'll be stuck waiting for link up change event
which will never arrive.

To fix this problem, when sending a packet to the device fails, do a
synchrnonus TX VirtIO queue flush (tell device there is data to process
and wait until its done with it).

With this fix in place nic_router_flood test scenario passes on both arm
qemu_virt boards.

Issue #4264
2021-10-13 14:46:51 +02:00
..
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-08-30 15:00:39 +02:00
2021-10-13 14:01:02 +02:00

                      ===============================
                      Genode source-code repositories
                      ===============================


This directory contains the source-code repositories of the Genode OS
Framework. Each sub directory has the same principle layout as described in the
build-system manual:

:Build-system manual:

  [https://genode.org/documentation/developer-resources/build_system]

The build system uses a configurable selection of those reposities to obtain
the source codes for the build process. The repositories are not independent
but build upon of each other:

:'base':

  This directory contains the source-code repository of the fundamental
  frameworks and interfaces of Genode. Furthermore, it contains the generic
  parts of core.

:'base-<platform>':
  These directories contain platform-specific source-code repositories
  complementing the 'base' repository. The following platforms are supported:

  :'linux':
    Linux kernel (both x86_32 and x86_64)

  :'nova':
    NOVA hypervisor developed at University of Technology Dresden

  :'foc':
    Fiasco.OC is a modernized version of the Fiasco microkernel with a
    completely revised kernel interface fostering capability-based
    security. It is not compatible with L4/Fiasco.

  :'hw':
    The hw platform allows the execution of Genode on bare ARM and x86 hardware
    without the need for a separate kernel. The kernel functionality is
    included in core.

  :'okl4':
    OKL4 kernel (x86_32 and ARM) developed at Open-Kernel-Labs.

  :'pistachio':
    L4ka::Pistachio kernel developed at University of Karlsruhe.

  :'fiasco':
    L4/Fiasco kernel developed at University of Technology Dresden.

  :'sel4':
    seL4 microkernel developed at NICTA/General Dynamics
    See[https://sel4.systems/]

:'os':

  This directory contains the non-base OS components such as the init process,
  device drivers, and basic system services.

:'demo':

  This directory contains the source-code repository of various services and
  applications that we use for demonstration purposes. For example, a graphical
  application launcher called Launchpad and the Scout tutorial browser.

:'hello_tutorial':

  Tutorial for creating a simple client-server scenario with Genode. This
  repository includes documentation and the complete source code.

:'libports':

  This source-code repository contains ports of popular open-source libraries
  to Genode, most importantly the C library. The repository contains no
  upstream source code but means to download the code and adapt it to Genode.
  For instructions about how to use this mechanism, please consult the README
  file at the top level of the repository. Among the 3rd-party libraries
  are Qt5, libSDL, freetype, Python, ncurses, Mesa, and libav.

:'dde_linux':

  This source-code repository contains the device driver environment for
  executing Linux device drivers natively on Genode. Currently, this
  repository hosts the USB stack.

:'dde_ipxe':

  This source-code repository contains the device-driver environment for
  executing drivers of the iPXE project.

:'dde_bsd':

  This source-code repository contains the device-driver environment for
  drivers of the OpenBSD operating system.

:'dde_rump':

  This source-code repository contains the port of rump kernels, which are
  used to execute subsystems of the NetBSD kernel as user level processes.
  The repository contains a server that uses a rump kernel to provide
  various NetBSD file systems to Genode.

:'ports':

  This source-code repository hosts ports of 3rd-party applications to
  Genode. The repository does not contain upstream source code but provides
  a mechanism for downloading the official source distributions and adapt
  them to the Genode environment. The used mechanism is roughly the same
  as used for the 'libports' repository. Please consult 'libports/README'
  for further information.

:'gems':

  This source-code repository contains Genode applications that use
  both native Genode interfaces as well as features of other high-level
  repositories, in particular shared libraries provided by 'libports'.