mirror of
https://github.com/genodelabs/genode.git
synced 2025-02-21 02:01:38 +00:00
This patch introduces a new scheme of handling ioctl operations that maps ioctls to pseudo-file accesses, similar to how the libc maps socket calls to socket-fs operations. A device file can be accompanied with a (hidden) directory that is named after the device file and hosts pseudo files for triggering the various device operations. For example, for accessing a terminal, the directory structure looks like this: /dev/terminal /dev/.terminal/info The 'info' file contains device information in XML format. The type of the XML node corresponds to the device type. E.g., If the libc receives a 'TIOCGWINSZ' ioctl for /dev/terminal, it reads the content of /dev/.terminal/info to obtain the terminal-size information. In this case, the 'info' file looks as follows: <terminal rows="25" columns="80/> Following this scheme, VFS plugins can support ioctl operations by providing an ioctl directory in addition to the actual device file. Internally, the mechanism uses the 'os/vfs.h' API to access pseudo files. Hence, we need to propagate the Vfs::Env to 'vfs_plugin.cc' to create an instance of a 'Directory' for the root for the VFS. Issue #3519
================================= Genode Operating System Framework ================================= This is the source tree of the reference implementation of the Genode OS architecture. For a general overview about the architecture, please refer to the project's official website: :Official project website for the Genode OS Framework: [https://genode.org/documentation/general-overview] The current implementation can be compiled for 8 different kernels: Linux, L4ka::Pistachio, L4/Fiasco, OKL4, NOVA, Fiasco.OC, seL4, and a custom kernel for running Genode directly on ARM-based hardware. Whereas the Linux version serves us as development vehicle and enables us to rapidly develop the generic parts of the system, the actual target platforms of the framework are microkernels. There is no "perfect" microkernel - and neither should there be one. If a microkernel pretended to be fit for all use cases, it wouldn't be "micro". Hence, all microkernels differ in terms of their respective features, complexity, and supported hardware architectures. Genode allows the use of each of the kernels listed above with a rich set of device drivers, protocol stacks, libraries, and applications in a uniform way. For developers, the framework provides an easy way to target multiple different kernels instead of tying the development to a particular kernel technology. For kernel developers, Genode contributes advanced workloads, stress-testing their kernel, and enabling a variety of application use cases that would not be possible otherwise. For users and system integrators, it enables the choice of the kernel that fits best with the requirements at hand for the particular usage scenario. Documentation ############# The primary documentation is the book "Genode Foundations", which is available on the front page of Genode website: :Download the book "Genode Foundations": [https://genode.org] The book describes Genode in a holistic and comprehensive way. It equips you with a thorough understanding of the architecture, assists developers with the explanation of the development environment and system configuration, and provides a look under the hood of the framework. Furthermore, it contains the specification of the framework's programming interface. The project has a quarterly release cycle. Each version is accompanied with detailed release documentation, which is available at the documentation section of the project website: :Release documentation: [https://genode.org/documentation/release-notes/] Directory overview ################## The source tree is composed of the following subdirectories: :'doc': This directory contains general documentation. Please consider the following document for a quick guide to get started with the framework: ! doc/getting_started.txt If you are curious about the ready-to-use components that come with the framework, please review the components overview: ! doc/components.txt :'repos': This directory contains the so-called source-code repositories of Genode. Please refer to the README file in the 'repos' directory to learn more about the roles of the individual repositories. :'tool': Source-code management tools and scripts. Please refer to the README file contained in the directory. :'depot' and 'public': Local depot and public archive of Genode packages. Please refer to ! doc/depot.txt for more details. Additional community-maintained components ########################################## The components found within the main source tree are complemented by a growing library of additional software, which can be seamlessly integrated into Genode system scenarios. :Genode-world repository: [https://github.com/genodelabs/genode-world] Contact ####### The best way to get in touch with Genode developers and users is the project's mailing list. Please feel welcome to join in! :Genode Mailing Lists: [https://genode.org/community/mailing-lists] Commercial support ################## The driving force behind the Genode OS Framework is the German company Genode Labs. The company offers commercial licensing, trainings, support, and contracted development work: :Genode Labs website: [https://www.genode-labs.com]
Description
Languages
C++
73.8%
C
17.9%
Makefile
4.4%
Tcl
1.3%
PHP
1%
Other
1.4%