mirror of
https://github.com/genodelabs/genode.git
synced 2024-12-23 23:42:32 +00:00
71d30297ff
This cleans up the syscalls that are mainly used to control the scheduling readiness of a thread. The different use cases and requirements were somehow mixed together in the previous interface. The new syscall set is: 1) pause_thread and resume_thread They don't affect the state of the thread (IPC, signalling, etc.) but merely decide wether the thread is allowed for scheduling or not, the so-called pause state. The pause state is orthogonal to the thread state and masks it when it comes to scheduling. In contrast to the stopped state, which is described in "stop_thread and restart_thread", the thread state and the UTCB content of a thread may change while in the paused state. However, the register state of a thread doesn't change while paused. The "pause" and "resume" syscalls are both core-restricted and may target any thread. They are used as back end for the CPU session calls "pause" and "resume". The "pause/resume" feature is made for applications like the GDB monitor that transparently want to stop and continue the execution of a thread no matter what state the thread is in. 2) stop_thread and restart_thread The stop syscall can only be used on a thread in the non-blocking ("active") thread state. The thread then switches to the "stopped" thread state in wich it explicitely waits for a restart. The restart syscall can only be used on a thread in the "stopped" or the "active" thread state. The thread then switches back to the "active" thread state and the syscall returns whether the thread was stopped. Both syscalls are not core-restricted. "Stop" always targets the calling thread while "restart" may target any thread in the same PD as the caller. Thread state and UTCB content of a thread don't change while in the stopped state. The "stop/restart" feature is used when an active thread wants to wait for an event that is not known to the kernel. Actually the syscalls are used when waiting for locks and on thread exit. 3) cancel_thread_blocking Does cleanly cancel a cancelable blocking thread state (IPC, signalling, stopped). The thread whose blocking was cancelled goes back to the "active" thread state. It may receive a syscall return value that reflects the cancellation. This syscall doesn't affect the pause state of the thread which means that it may still not get scheduled. The syscall is core-restricted and may target any thread. 4) yield_thread Does its best that a thread is scheduled as few as possible in the current scheduling super-period without touching the thread or pause state. In the next superperiod, however, the thread is scheduled "normal" again. The syscall is not core-restricted and always targets the caller. Fixes #2104 |
||
---|---|---|
.. | ||
base | ||
base-fiasco | ||
base-foc | ||
base-hw | ||
base-linux | ||
base-nova | ||
base-okl4 | ||
base-pistachio | ||
base-sel4 | ||
dde_bsd | ||
dde_ipxe | ||
dde_linux | ||
dde_rump | ||
demo | ||
gems | ||
hello_tutorial | ||
libports | ||
os | ||
ports | ||
ports-foc | ||
README |
=============================== Genode source-code repositories =============================== This directory contains the source-code repositories of the Genode OS Framework. Each sub directory has the same principle layout as described in the build-system manual: :Build-system manual: [https://genode.org/documentation/developer-resources/build_system] The build system uses a configurable selection of those reposities to obtain the source codes for the build process. The repositories are not independent but build upon of each other: :'base': This directory contains the source-code repository of the fundamental frameworks and interfaces of Genode. Furthermore, it contains the generic parts of core. :'base-<platform>': These directories contain platform-specific source-code repositories complementing the 'base' repository. The following platforms are supported: :'linux': Linux kernel (both x86_32 and x86_64) :'nova': NOVA hypervisor developed at University of Technology Dresden See [https://genode.org/documentation/platforms/nova] :'foc': Fiasco.OC is a modernized version of the Fiasco microkernel with a completely revised kernel interface fostering capability-based security. It is not compatible with L4/Fiasco. See [https://genode.org/documentation/platforms/foc] :'hw': The hw platform allows the execution of Genode on bare ARM and x86 hardware without the need for a separate kernel. The kernel functionality is included in core except in the special case of the Muen separation kernel. See [https://genode.org/documentation/platforms/hw] and [https://genode.org/documentation/platforms/muen] :'okl4': OKL4 kernel (x86_32 and ARM) developed at Open-Kernel-Labs. See [https://genode.org/documentation/platforms/okl4] :'pistachio': L4ka::Pistachio kernel developed at University of Karlsruhe. See [https://genode.org/documentation/platforms/pistachio] :'fiasco': L4/Fiasco kernel developed at University of Technology Dresden. See [https://genode.org/documentation/platforms/fiasco] :'sel4': seL4 microkernel developed at NICTA/General Dynamics See[https://sel4.systems/] :'os': This directory contains the non-base OS components such as the init process, device drivers, and basic system services. :'demo': This directory contains the source-code repository of various services and applications that we use for demonstration purposes. For example, a graphical application launcher called Launchpad and the Scout tutorial browser. :'hello_tutorial': Tutorial for creating a simple client-server scenario with Genode. This repository includes documentation and the complete source code. :'libports': This source-code repository contains ports of popular open-source libraries to Genode, most importantly the C library. The repository contains no upstream source code but means to download the code and adapt it to Genode. For instructions about how to use this mechanism, please consult the README file at the top level of the repository. Among the 3rd-party libraries are Qt5, libSDL, freetype, Python, ncurses, Mesa, and libav. :'dde_linux': This source-code repository contains the device driver environment for executing Linux device drivers natively on Genode. Currently, this repository hosts the USB stack. :'dde_ipxe': This source-code repository contains the device-driver environment for executing drivers of the iPXE project. :'dde_bsd': This source-code repository contains the device-driver environment for drivers of the OpenBSD operating system. :'dde_rump': This source-code repository contains the port of rump kernels, which are used to execute subsystems of the NetBSD kernel as user level processes. The repository contains a server that uses a rump kernel to provide various NetBSD file systems to Genode. :'ports': This source-code repository hosts ports of 3rd-party applications to Genode. The repository does not contain upstream source code but provides a mechanism for downloading the official source distributions and adapt them to the Genode environment. The used mechanism is roughly the same as used for the 'libports' repository. Please consult 'libports/README' for further information. :'ports-<platform>': These platform-specific source-code repositories contain software that capitalizes special features of the respective kernel platform. For the Fiasco.OC platform, 'ports-foc' hosts a port of the L4Linux kernel. For further information, please refer to the README file at the top level of the respective repository. :'gems': This source-code repository contains Genode applications that use both native Genode interfaces as well as features of other high-level repositories, in particular shared libraries provided by 'libports'.