mirror of
https://github.com/genodelabs/genode.git
synced 2024-12-19 05:37:54 +00:00
Genode OS Framework
armcpluspluscppframeworkgenodegoahypervisorlinuxmicrokernelnovaobject-capabilitiesoperating-systemosdevriscvsculpt-ossel4virtualizationx86
4a1a29b3d0
This patch lays the selection of the used storage target into the hands of the config/manager file. By default, Sculpt selects the target by its built-in heuristics, probing for a Sculpt partition. However, by specifying a <target> node, one can explicitly select a storage target. E.g., for using the 2nd partition of the SATA disk connected to port 1 of the AHCI controller, one can now specify: <target driver="ahci" port="1" partition="2"/> For selecting the ram_fs as target: <target driver="ram_fs"/> The latter case is particularly useful for custom Sculpt scenarios deployed entirely from RAM. For such scenarios, add two lines to your .sculpt file: ram_fs: depot manager: use_ram_fs The first line configures the ram_fs such that the depot is mounted as a tar archive. The second line configures the sculpt manager to select the ram_fs as storage target. You can find this feature exemplified in default-linux.sculpt scenario. build/x86_64$ make run/sculpt_test KERNEL=linux BOARD=linux It is worth noting that the configuration can be changed at runtime. This allows for switching between different storage targets on the fly. Issue #5166 |
||
---|---|---|
doc | ||
repos | ||
tool | ||
.gitignore | ||
LICENSE | ||
README | ||
VERSION |
================================= Genode Operating System Framework ================================= This is the source code of Genode, which is a framework for creating component-based operating systems. It combines capability-based security, microkernel technology, sandboxed device drivers, and virtualization with a novel operating system architecture. For a general overview about the architecture, please refer to the project's official website: :Website for the Genode OS Framework: [https://genode.org/documentation/general-overview] Genode-based operating systems can be compiled for a variety of kernels: Linux, L4ka::Pistachio, L4/Fiasco, OKL4, NOVA, Fiasco.OC, seL4, and a custom "hw" microkernel for running Genode without a 3rd-party kernel. Whereas the Linux version serves us as development vehicle and enables us to rapidly develop the generic parts of the system, the actual target platforms of the framework are microkernels. There is no "perfect" microkernel - and neither should there be one. If a microkernel pretended to be fit for all use cases, it wouldn't be "micro". Hence, all microkernels differ in terms of their respective features, complexity, and supported hardware architectures. Genode allows for the use of each of the supported kernels with a rich set of device drivers, protocol stacks, libraries, and applications in a uniform way. For developers, the framework provides an easy way to target multiple different kernels instead of tying the development to a particular kernel technology. For kernel developers, Genode contributes advanced workloads, stress-testing their kernel, and enabling a variety of application use cases that would not be possible otherwise. For users and system integrators, it enables the choice of the kernel that fits best with the requirements at hand for the particular usage scenario. Documentation ############# The primary documentation is the book "Genode Foundations", which is available on the front page of the Genode website: :Download the book "Genode Foundations": [https://genode.org] The book describes Genode in a holistic and comprehensive way. It equips you with a thorough understanding of the architecture, assists developers with the explanation of the development environment and system configuration, and provides a look under the hood of the framework. Furthermore, it contains the specification of the framework's programming interface. The project has a quarterly release cycle. Each version is accompanied with detailed release documentation, which is available at the documentation section of the project website: :Release documentation: [https://genode.org/documentation/release-notes/] Directory overview ################## The source tree is composed of the following subdirectories: :'doc': This directory contains general documentation along with a comprehensive collection of release notes. :'repos': This directory contains the source code, organized in so-called source-code repositories. Please refer to the README file in the 'repos' directory to learn more about the roles of the individual repositories. :'tool': Source-code management tools and scripts. Please refer to the README file contained in the directory. Additional hardware support ########################### The framework supports a variety of hardware platforms such as different ARM SoC families via supplemental repositories. :Repositories maintained by Genode Labs: [https://github.com/orgs/genodelabs/repositories] Additional community-maintained components ########################################## The components found within the main source tree are complemented by a growing library of additional software, which can be seamlessly integrated into Genode system scenarios. :Genode-world repository: [https://github.com/genodelabs/genode-world] Community blog ############## Genodians.org presents ideas, announcements, experience stories, and tutorials around Genode, informally written by Genode users and developers. :Genodians.org: [https://genodians.org] Contact ####### The best way to get in touch with Genode developers and users is the project's mailing list. Please feel welcome to join in! :Genode Mailing Lists: [https://genode.org/community/mailing-lists] Commercial support ################## The driving force behind the Genode OS Framework is the German company Genode Labs. The company offers commercial licensing, trainings, support, and contracted development work: :Genode Labs website: [https://www.genode-labs.com]