genode/repos/base-hw/src/bootstrap/platform.cc
Stefan Kalkowski 42db1e112b hw: introduce kernel/user address space split
* introduces central memory map for core/kernel
* on 32-bit platforms the kernel/core starts at 0x80000000
* on 64-bit platforms the kernel/core starts at 0xffffffc000000000
* mark kernel/core mappings as global ones (tagged TLB)
* move the exception vector to begin of core's binary,
  thereby bootstrap knows from where to map it appropriately
* do not map boot modules into core anymore
* constrain core's virtual heap memory area
* differentiate in between user's and core's main thread's UTCB,
  which now resides inside the kernel segment

Ref #2091
2017-10-19 13:31:17 +02:00

202 lines
5.5 KiB
C++

/*
* \brief Platform implementation
* \author Stefan Kalkowski
* \date 2016-10-19
*/
/*
* Copyright (C) 2016-2017 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU Affero General Public License version 3.
*/
#include <base/internal/crt0.h>
#include <hw/assert.h>
#include <boot_modules.h>
#include <platform.h>
using namespace Bootstrap;
/*****************************
** Platform::Ram_allocator **
*****************************/
void * Platform::Ram_allocator::alloc_aligned(size_t size, unsigned align)
{
using namespace Genode;
using namespace Hw;
void * ret;
assert(Base::alloc_aligned(round_page(size), &ret,
max(align, get_page_size_log2())).ok());
return ret;
}
bool Platform::Ram_allocator::alloc(size_t size, void **out_addr)
{
*out_addr = alloc_aligned(size, 0);
return true;
}
void Platform::Ram_allocator::add(Memory_region const & region) {
add_range(region.base, region.size); }
void Platform::Ram_allocator::remove(Memory_region const & region) {
remove_range(region.base, region.size); }
/******************
** Platform::Pd **
******************/
Platform::Pd::Pd(Platform::Ram_allocator & alloc)
: table_base(alloc.alloc_aligned(sizeof(Table), Table::ALIGNM_LOG2)),
array_base(alloc.alloc_aligned(sizeof(Table_array), Table::ALIGNM_LOG2)),
table(*Genode::construct_at<Table>(table_base)),
array(*Genode::construct_at<Table_array>(array_base))
{
using namespace Genode;
addr_t const table_virt_base = Hw::Mm::core_page_tables().base;
map_insert(Mapping((addr_t)table_base, table_virt_base,
sizeof(Table), Hw::PAGE_FLAGS_KERN_DATA));
map_insert(Mapping((addr_t)array_base, table_virt_base + sizeof(Table),
sizeof(Table_array), Hw::PAGE_FLAGS_KERN_DATA));
}
void Platform::Pd::map(Mapping m)
{
try {
table.insert_translation(m.virt(), m.phys(), m.size(), m.flags(),
array.alloc());
} catch (Hw::Out_of_tables &) {
Genode::error("translation table needs to much RAM");
} catch (...) {
Genode::error("invalid mapping ", m);
}
}
void Platform::Pd::map_insert(Mapping m)
{
mappings.add(m);
map(m);
}
/**************
** Platform **
**************/
Mapping Platform::_load_elf()
{
using namespace Genode;
using namespace Hw;
Mapping ret;
auto lambda = [&] (Genode::Elf_segment & segment) {
void * phys = (void*)(core_elf_addr + segment.file_offset());
size_t const size = round_page(segment.mem_size());
if (segment.flags().w) {
unsigned align_log2;
for (align_log2 = 0; align_log2 < 8*sizeof(addr_t); align_log2++)
if ((addr_t)(1 << align_log2) & (addr_t)phys) break;
void * const dst = ram_alloc.alloc_aligned(segment.mem_size(),
align_log2);
memcpy(dst, phys, segment.file_size());
if (size > segment.file_size())
memset((void *)((addr_t)dst + segment.file_size()),
0, size - segment.file_size());
phys = dst;
}
//FIXME: set read-only, privileged and global accordingly
Page_flags flags{RW, segment.flags().x ? EXEC : NO_EXEC,
USER, GLOBAL, RAM, CACHED};
Mapping m((addr_t)phys, (addr_t)segment.start(), size, flags);
/*
* Do not map the read-only, non-executable segment containing
* the boot modules, although it is a loadable segment, which we
* define so that the modules are loaded as ELF image
* via the bootloader
*/
if (segment.flags().x || segment.flags().w)
core_pd->map_insert(m);
else
ret = m;
};
core_elf.for_each_segment(lambda);
return ret;
}
void Platform::start_core()
{
typedef void (* Entry)();
Entry __attribute__((noreturn)) const entry
= reinterpret_cast<Entry>(core_elf.entry());
entry();
}
static constexpr Genode::Boot_modules_header & header() {
return *((Genode::Boot_modules_header*) &_boot_modules_headers_begin); }
Platform::Platform()
: bootstrap_region((addr_t)&_prog_img_beg,
((addr_t)&_prog_img_end - (addr_t)&_prog_img_beg)),
core_pd(ram_alloc),
core_elf_addr(header().base),
core_elf(core_elf_addr)
{
using namespace Genode;
/* prepare the ram allocator */
board.early_ram_regions.for_each([this] (Memory_region const & region) {
ram_alloc.add(region); });
ram_alloc.remove(bootstrap_region);
/* now we can use the ram allocator for core's pd */
core_pd.construct(ram_alloc);
/* temporarily map all bootstrap memory 1:1 for transition to core */
// FIXME do not insert as mapping for core
core_pd->map_insert(Mapping(bootstrap_region.base, bootstrap_region.base,
bootstrap_region.size, Hw::PAGE_FLAGS_KERN_TEXT));
/* map memory-mapped I/O for core */
board.core_mmio.for_each_mapping([&] (Mapping const & m) {
core_pd->map_insert(m); });
/* load ELF */
Mapping boot_modules = _load_elf();
/* setup boot info page */
void * bi_base = ram_alloc.alloc(sizeof(Boot_info));
core_pd->map_insert(Mapping((addr_t)bi_base, Hw::Mm::boot_info().base,
sizeof(Boot_info), Hw::PAGE_FLAGS_KERN_TEXT));
Boot_info & bootinfo =
*construct_at<Boot_info>(bi_base, (addr_t)&core_pd->table,
(addr_t)&core_pd->array,
core_pd->mappings, boot_modules,
board.core_mmio, board.acpi_rsdp);
/* add all left RAM to bootinfo */
ram_alloc.for_each_free_region([&] (Memory_region const & r) {
bootinfo.ram_regions.add(r); });
board.late_ram_regions.for_each([&] (Memory_region const & r) {
bootinfo.ram_regions.add(r); });
}