genode/base-hw/include/kernel/interface.h
Martin Stein 3bdf70f771 hw: rename kill_* functions in bin_*
In the future bin_* means the direct destruction of a kernel object
without any blocking. kill_* in contrast is used for bringing a
kernel object such as signal contexts synchronized into a sleeping
state from where they can be destructed without the risk of getting
broken refs in userland.

ref #989
2013-12-20 14:48:06 +01:00

606 lines
16 KiB
C++

/*
* \brief Interface between kernel and userland
* \author Martin stein
* \date 2011-11-30
*/
/*
* Copyright (C) 2011-2013 Genode Labs GmbH
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU General Public License version 2.
*/
#ifndef _KERNEL__INTERFACE_H_
#define _KERNEL__INTERFACE_H_
/* Genode includes */
#include <kernel/interface_support.h>
namespace Genode
{
class Native_utcb;
class Platform_pd;
class Tlb;
}
namespace Kernel
{
typedef Genode::Tlb Tlb;
typedef Genode::addr_t addr_t;
typedef Genode::size_t size_t;
typedef Genode::Platform_pd Platform_pd;
typedef Genode::Native_utcb Native_utcb;
/**
* Kernel names of all kernel calls
*/
struct Call_id
{
enum {
NEW_THREAD = 0,
BIN_THREAD = 1,
START_THREAD = 2,
PAUSE_THREAD = 3,
RESUME_THREAD = 4,
YIELD_THREAD = 5,
ACCESS_THREAD_REGS = 6,
ROUTE_THREAD_EVENT = 7,
UPDATE_PD = 8,
UPDATE_REGION = 9,
NEW_PD = 10,
BIN_PD = 11,
SEND_REQUEST_MSG = 12,
SEND_REPLY_MSG = 13,
AWAIT_REQUEST_MSG = 14,
NEW_SIGNAL_RECEIVER = 15,
NEW_SIGNAL_CONTEXT = 16,
BIN_SIGNAL_CONTEXT = 17,
BIN_SIGNAL_RECEIVER = 18,
SUBMIT_SIGNAL = 19,
AWAIT_SIGNAL = 20,
SIGNAL_PENDING = 21,
ACK_SIGNAL = 22,
NEW_VM = 23,
RUN_VM = 24,
PAUSE_VM = 25,
PRINT_CHAR = 26,
};
};
/*****************************************************************
** Kernel call with 1 to 6 arguments **
** **
** These functions must not be inline to ensure that objects, **
** wich are referenced by arguments, are tagged as "used" even **
** though only the pointer gets handled in here. **
*****************************************************************/
Call_ret call(Call_arg arg_0);
Call_ret call(Call_arg arg_0,
Call_arg arg_1);
Call_ret call(Call_arg arg_0,
Call_arg arg_1,
Call_arg arg_2);
Call_ret call(Call_arg arg_0,
Call_arg arg_1,
Call_arg arg_2,
Call_arg arg_3);
Call_ret call(Call_arg arg_0,
Call_arg arg_1,
Call_arg arg_2,
Call_arg arg_3,
Call_arg arg_4);
Call_ret call(Call_arg arg_0,
Call_arg arg_1,
Call_arg arg_2,
Call_arg arg_3,
Call_arg arg_4,
Call_arg arg_5);
/**
* Virtual range of the mode transition region in every PD
*/
addr_t mode_transition_virt_base();
size_t mode_transition_size();
/**
* Get sizes of the kernel objects
*/
size_t thread_size();
size_t pd_size();
size_t signal_context_size();
size_t signal_receiver_size();
size_t vm_size();
/**
* Get alignment constraints of the kernel objects
*/
unsigned kernel_pd_alignm_log2();
/**
* Create a protection domain
*
* \param p appropriate memory donation for the kernel object
* \param pd core local Platform_pd object
*
* \retval >0 kernel name of the new protection domain
* \retval 0 failed
*
* Restricted to core threads. Regaining of the supplied memory is not
* supported by now.
*/
inline unsigned new_pd(void * const dst, Platform_pd * const pd)
{
return call(Call_id::NEW_PD, (Call_arg)dst, (Call_arg)pd);
}
/**
* Destruct a protection domain
*
* \param pd_id kernel name of the targeted protection domain
*
* \retval 0 succeeded
* \retval -1 failed
*/
inline int bin_pd(unsigned const pd_id)
{
return call(Call_id::BIN_PD, pd_id);
}
/**
* Propagate changes in PD configuration
*
* \param pd_id ID of the PD that has been configured
*
* It might be, that the kernel and/or the hardware caches parts of PD
* configurations such as virtual address translations. This function
* ensures that the current configuration of the targeted PD gets fully
* applied from the moment it returns to the userland. This function is
* inappropriate in case that a PD wants to change its own configuration.
* There's no need for this function after a configuration change that
* can't affect the kernel- and/or hardware-caches.
*
* Restricted to core threads.
*/
inline void update_pd(unsigned const pd_id)
{
call(Call_id::UPDATE_PD, pd_id);
}
/**
* Propagate memory-updates within a given virtual region
*
* \param base virtual base of the region
* \param size size of the region
*
* If one updates a memory region and must ensure that the update
* gets visible directly to other address spaces, this function does
* the job.
*
* Restricted to core threads.
*/
inline void update_region(addr_t const base, size_t const size)
{
call(Call_id::UPDATE_REGION, (Call_arg)base, (Call_arg)size);
}
/**
* Create kernel object that acts as thread that isn't executed initially
*
* \param p memory donation for the new kernel thread object
* \param priority scheduling priority of the new thread
* \param label debugging label of the new thread
*
* \retval >0 kernel name of the new thread
* \retval 0 failed
*
* Restricted to core threads.
*/
inline int new_thread(void * const p, unsigned const priority,
char const * const label)
{
return call((Call_arg)Call_id::NEW_THREAD, (Call_arg)p, (Call_arg)priority,
(Call_arg)label);
}
/**
* Destruct kernel thread-object
*
* \param thread_id kernel name of the targeted thread
*
* Restricted to core threads.
*/
inline void bin_thread(unsigned const thread_id)
{
call(Call_id::BIN_THREAD, thread_id);
}
/**
* Start executing a thread
*
* \param thread_id kernel name of targeted thread
* \param cpu_id kernel name of targeted processor
* \param pd_id kernel name of targeted protection domain
* \param utcb core local pointer to userland thread-context
*
* Restricted to core threads.
*/
inline Tlb * start_thread(unsigned const thread_id, unsigned const cpu_id,
unsigned const pd_id, Native_utcb * const utcb)
{
return (Tlb *)call(Call_id::START_THREAD, thread_id, cpu_id, pd_id,
(Call_arg)utcb);
}
/**
* Prevent thread from participating in CPU scheduling
*
* \param thread_id kernel name of the targeted thread or 0
*
* \retval 0 succeeded
* \retval -1 the targeted thread does not exist or is still active
*
* If thread_id is set to 0 the caller targets itself. If the caller
* doesn't target itself, the call is restricted to core threads.
*/
inline int pause_thread(unsigned const thread_id)
{
return call(Call_id::PAUSE_THREAD, thread_id);
}
/**
* Let an already started thread participate in CPU scheduling
*
* \param thread_id kernel name of the targeted thread
*
* \retval 0 succeeded and thread was paused beforehand
* \retval 1 succeeded and thread was active beforehand
* \retval -1 failed
*
* If the targeted thread blocks for any event except a 'start_thread'
* call this call cancels the blocking.
*/
inline int resume_thread(unsigned const thread_id)
{
return call(Call_id::RESUME_THREAD, thread_id);
}
/**
* Let the current thread give up its remaining timeslice
*
* \param thread_id kernel name of the benefited thread
*
* If thread_id is valid the call will resume the targeted thread
* additionally.
*/
inline void yield_thread(unsigned const thread_id)
{
call(Call_id::YIELD_THREAD, thread_id);
}
/**
* Set or unset the handler of an event a kernel thread-object triggers
*
* \param thread_id kernel name of the targeted thread
* \param event_id kernel name of the targeted thread event
* \param signal_context_id kernel name of the handlers signal context
*
* Restricted to core threads.
*/
inline int route_thread_event(unsigned const thread_id,
unsigned const event_id,
unsigned const signal_context_id)
{
return call(Call_id::ROUTE_THREAD_EVENT, thread_id,
event_id, signal_context_id);
}
/**
* Send request message and await receipt of corresponding reply message
*
* \param thread_id kernel name of targeted thread
*
* \retval 0 succeeded
* \retval -1 failed
*
* If the call returns successful, the received message is located at the
* base of the callers userland thread-context.
*/
inline int send_request_msg(unsigned const thread_id)
{
return call(Call_id::SEND_REQUEST_MSG, thread_id);
}
/**
* Await receipt of request message
*
* \retval 0 succeeded
* \retval -1 failed
*
* If the call returns successful, the received message is located at the
* base of the callers userland thread-context.
*/
inline int await_request_msg()
{
return call(Call_id::AWAIT_REQUEST_MSG);
}
/**
* Reply to lastly received request message
*
* \param await_request_msg wether the call shall await a request message
*
* \retval 0 await_request_msg == 0 or request-message receipt succeeded
* \retval -1 await_request_msg == 1 and request-message receipt failed
*
* If the call returns successful and await_request_msg == 1, the received
* message is located at the base of the callers userland thread-context.
*/
inline int send_reply_msg(bool const await_request_msg)
{
return call(Call_id::SEND_REPLY_MSG, await_request_msg);
}
/**
* Print a char c to the kernels serial ouput
*
* If c is set to 0 the kernel prints a table of all threads and their
* current activities to the serial output.
*/
inline void print_char(char const c)
{
call(Call_id::PRINT_CHAR, c);
}
/**
* Access plain member variables of a kernel thread-object
*
* \param thread_id kernel name of the targeted thread
* \param reads amount of read operations
* \param writes amount of write operations
* \param read_values base of value buffer for read operations
* \param write_values base of value buffer for write operations
*
* \retval 0 all operations done
* \retval >0 amount of undone operations
* \retval -1 failed to start processing operations
*
* Restricted to core threads. Operations are processed in order of the
* appearance of the register names in the callers UTCB. If reads = 0,
* read_values is of no relevance. If writes = 0, write_values is of no
* relevance.
*
* Expected structure at the callers UTCB base:
*
* 0 * sizeof(addr_t): read register name #1
* ... ...
* (reads - 1) * sizeof(addr_t): read register name #reads
* (reads - 0) * sizeof(addr_t): write register name #1
* ... ...
* (reads + writes - 1) * sizeof(addr_t): write register name #writes
*
* Expected structure at write_values:
*
* 0 * sizeof(addr_t): write value #1
* ... ...
* (writes - 1) * sizeof(addr_t): write value #writes
*/
inline int access_thread_regs(unsigned const thread_id,
unsigned const reads,
unsigned const writes,
addr_t * const read_values,
addr_t * const write_values)
{
return call(Call_id::ACCESS_THREAD_REGS, thread_id, reads, writes,
(Call_arg)read_values, (Call_arg)write_values);
}
/**
* Create a kernel object that acts as a signal receiver
*
* \param p memory donation for the kernel signal-receiver object
*
* \retval >0 kernel name of the new signal receiver
* \retval 0 failed
*
* Restricted to core threads.
*/
inline unsigned new_signal_receiver(addr_t const p)
{
return call(Call_id::NEW_SIGNAL_RECEIVER, p);
}
/**
* Create kernel object that acts as a signal context and assign it
*
* \param p memory donation for the kernel signal-context object
* \param receiver kernel name of targeted signal receiver
* \param imprint user label of the signal context
*
* \retval >0 kernel name of the new signal context
* \retval 0 failed
*
* Restricted to core threads.
*/
inline unsigned new_signal_context(addr_t const p,
unsigned const receiver,
unsigned const imprint)
{
return call(Call_id::NEW_SIGNAL_CONTEXT, p, receiver, imprint);
}
/**
* Await any context of a receiver and optionally ack a context before
*
* \param receiver_id kernel name of the targeted signal receiver
* \param context_id kernel name of a context that shall be acknowledged
*
* \retval 0 suceeded
* \retval -1 failed
*
* If context is set to 0, the call doesn't acknowledge any context.
* If this call returns 0, an instance of 'Signal::Data' is located at the
* base of the callers UTCB. Every occurence of a signal is provided
* through this function until it gets delivered through this function or
* context respectively receiver get destructed. If multiple threads
* listen at the same receiver, and/or multiple contexts of the receiver
* trigger simultanously, there is no assertion about wich thread
* receives, and from wich context. A context that delivered once doesn't
* deliver again unless its last delivery has been acknowledged via
* ack_signal.
*/
inline int await_signal(unsigned const receiver_id,
unsigned const context_id)
{
return call(Call_id::AWAIT_SIGNAL, receiver_id, context_id);
}
/**
* Return wether any context of a receiver is pending
*
* \param receiver kernel name of the targeted signal receiver
*
* \retval 0 none of the contexts is pending or the receiver doesn't exist
* \retval 1 a context of the signal receiver is pending
*/
inline bool signal_pending(unsigned const receiver)
{
return call(Call_id::SIGNAL_PENDING, receiver);
}
/**
* Trigger a specific signal context
*
* \param context kernel name of the targeted signal context
* \param num how often the context shall be triggered by this call
*
* \retval 0 suceeded
* \retval -1 failed
*/
inline int submit_signal(unsigned const context, unsigned const num)
{
return call(Call_id::SUBMIT_SIGNAL, context, num);
}
/**
* Acknowledge the processing of the last delivery of a signal context
*
* \param context kernel name of the targeted signal context
*/
inline void ack_signal(unsigned const context)
{
call(Call_id::ACK_SIGNAL, context);
}
/**
* Destruct a signal context
*
* \param context kernel name of the targeted signal context
*
* \retval 0 suceeded
* \retval -1 failed
*
* Restricted to core threads.
*/
inline int bin_signal_context(unsigned const context)
{
return call(Call_id::BIN_SIGNAL_CONTEXT, context);
}
/**
* Destruct a signal receiver
*
* \param receiver kernel name of the targeted signal receiver
*
* \retval 0 suceeded
* \retval -1 failed
*
* Restricted to core threads.
*/
inline int bin_signal_receiver(unsigned const receiver)
{
return call(Call_id::BIN_SIGNAL_RECEIVER, receiver);
}
/**
* Create a virtual machine that is stopped initially
*
* \param dst memory donation for the kernel VM-object
* \param state location of the CPU state of the VM
* \param signal_context_id kernel name of the signal context for VM events
*
* \retval >0 kernel name of the new VM
* \retval 0 failed
*
* Restricted to core threads. Regaining of the supplied memory is not
* supported by now.
*/
inline int new_vm(void * const dst, void * const state,
unsigned const signal_context_id)
{
return call(Call_id::NEW_VM, (Call_arg)dst, (Call_arg)state,
signal_context_id);
}
/**
* Execute a virtual-machine (again)
*
* \param vm_id kernel name of the targeted VM
*
* Restricted to core threads.
*/
inline void run_vm(unsigned const vm_id)
{
call(Call_id::RUN_VM, vm_id);
}
/**
* Stop execution of a virtual-machine
*
* \param vm_id kernel name of the targeted VM
*
* Restricted to core threads.
*/
inline void pause_vm(unsigned const vm_id)
{
call(Call_id::PAUSE_VM, vm_id);
}
}
#endif /* _KERNEL__INTERFACE_H_ */