Martin Stein 1b1a9ca95c nic_router: fix bad connection states on IP change
When a domain receives a new dynamic router IP address and that domain has
active connection states (TCP/UDP/ICMP) from another domain with NAT applied,
the connection states used to stay active while becoming obsolete. They
become obsolete because their identification and their packet processor
use the old routers IP address due to NAT.

One consequence was that connections became dysfunctional when the server
domain received a new dynamic router IP address. Request packets were still
routed from client to server, but when entering the server, their source IP
address was the outdated router address. Consequently, the server responses
used the outdated address as destination and the router dropped the responses
because it did not know this address anymore.

This commit fixes the problem by letting a domain destroy all its connection
states that were initiated from within other domains whenever it detaches from
its current IP configuration.

Strictly speaking, it is not necessary to destroy all connection states, only
those that the domain applies NAT to. However, the Genode AVL tree is not built
for removing a selection of nodes and trying to do it anyways is complicated.
So, for now, we simply destroy all connection states.

Note that the other way around was handled correctly already. When a domain
detaches from its IP config, all interfaces of that domain destroy all the
connection states they created (towards other domains).

Fixes #4696
2023-01-24 12:07:29 +01:00
2023-01-24 12:07:28 +01:00
2020-03-26 11:38:54 +01:00
2022-11-30 14:02:24 +01:00

                      =================================
                      Genode Operating System Framework
                      =================================


This is the source tree of the reference implementation of the Genode OS
architecture. For a general overview about the architecture, please refer to
the project's official website:

:Official project website for the Genode OS Framework:

  [https://genode.org/documentation/general-overview]

The current implementation can be compiled for 8 different kernels: Linux,
L4ka::Pistachio, L4/Fiasco, OKL4, NOVA, Fiasco.OC, seL4, and a custom "hw"
microkernel for running Genode without a 3rd-party kernel. Whereas the Linux
version serves us as development vehicle and enables us to rapidly develop the
generic parts of the system, the actual target platforms of the framework are
microkernels. There is no "perfect" microkernel - and neither should there be
one. If a microkernel pretended to be fit for all use cases, it wouldn't be
"micro". Hence, all microkernels differ in terms of their respective features,
complexity, and supported hardware architectures.

Genode allows the use of each of the kernels listed above with a rich set of
device drivers, protocol stacks, libraries, and applications in a uniform way.
For developers, the framework provides an easy way to target multiple different
kernels instead of tying the development to a particular kernel technology. For
kernel developers, Genode contributes advanced workloads, stress-testing their
kernel, and enabling a variety of application use cases that would not be
possible otherwise. For users and system integrators, it enables the choice of
the kernel that fits best with the requirements at hand for the particular
usage scenario.


Documentation
#############

The primary documentation is the book "Genode Foundations", which is available
on the front page of Genode website:

:Download the book "Genode Foundations":

  [https://genode.org]

The book describes Genode in a holistic and comprehensive way. It equips you
with a thorough understanding of the architecture, assists developers with the
explanation of the development environment and system configuration, and
provides a look under the hood of the framework. Furthermore, it contains the
specification of the framework's programming interface.

The project has a quarterly release cycle. Each version is accompanied with
detailed release documentation, which is available at the documentation
section of the project website:

:Release documentation:

  [https://genode.org/documentation/release-notes/]


Directory overview
##################

The source tree is composed of the following subdirectories:

:'doc':

  This directory contains general documentation along with a comprehensive
  collection of release notes.

:'repos':

  This directory contains the source code, organized in so-called source-code
  repositories. Please refer to the README file in the 'repos' directory to
  learn more about the roles of the individual repositories.

:'tool':

  Source-code management tools and scripts. Please refer to the README file
  contained in the directory.

:'depot':

  Directory used by Genode's package-management tools. It contains the public
  keys and download locations of software providers.


Additional hardware support
###########################

The framework supports a variety of hardware platforms such as different ARM
SoC families via supplemental repositories.

:Repositories maintained by Genode Labs:

  [https://github.com/orgs/genodelabs/repositories]


Additional community-maintained components
##########################################

The components found within the main source tree are complemented by a growing
library of additional software, which can be seamlessly integrated into Genode
system scenarios.

:Genode-world repository:

  [https://github.com/genodelabs/genode-world]


Contact
#######

The best way to get in touch with Genode developers and users is the project's
mailing list. Please feel welcome to join in!

:Genode Mailing Lists:

  [https://genode.org/community/mailing-lists]


Commercial support
##################

The driving force behind the Genode OS Framework is the German company Genode
Labs. The company offers commercial licensing, trainings, support, and
contracted development work:

:Genode Labs website:

  [https://www.genode-labs.com]

Languages
C++ 73.8%
C 17.9%
Makefile 4.4%
Tcl 1.3%
PHP 1%
Other 1.4%