mirror of
https://github.com/genodelabs/genode.git
synced 2025-04-08 11:55:24 +00:00
Kernel tests are done by replacing the implementation of an otherwise empty function 'Kernel::test' that gets called once at the primary CPU as soon as all kernel initialization is done. To achieve this, the test binary that implements 'Kernel::test' must be linked against the core lib and must then replace the core binary when composing the boot image. The latter can be done conveniently in a run script by setting the new argument 'core_type' of the function 'build_boot_image' to the falue 'test'. If no kernel test is needed the argument does not have to be given - it is set to 'core' by default which results in a "normal" Genode image. ref #1225
================================= Genode Operating System Framework ================================= This is the source tree of the reference implementation of the Genode OS architecture. For a general overview about the architecture, please refer to the project's official website: :Official project website for the Genode OS Framework: [http://genode.org/documentation/general-overview] The current implementation can be compiled for 8 different kernels: Linux, L4ka::Pistachio, L4/Fiasco, OKL4, NOVA, Fiasco.OC, Codezero, and a custom kernel for running Genode directly on ARM-based hardware. Whereas the Linux version serves us as development vehicle and enables us to rapidly develop the generic parts of the system, the actual target platforms of the framework are microkernels. There is no "perfect" microkernel - and neither should there be one. If a microkernel pretended to be fit for all use cases, it wouldn't be "micro". Hence, all microkernels differ in terms of their respective features, complexity, and supported hardware architectures. Genode allows the use of each of the kernels listed above with a rich set of device drivers, protocol stacks, libraries, and applications in a uniform way. For developers, the framework provides an easy way to target multiple different kernels instead of tying the development to a particular kernel technology. For kernel developers, Genode contributes advanced workloads, stress-testing their kernel, and enabling a variety of application use cases that would not be possible otherwise. For users and system integrators, it enables the choice of the kernel that fits best with the requirements at hand for the particular usage scenario. Directory overview ################## The source tree is composed of the following subdirectories: :'doc': This directory contains general documentation. Please consider the following document for a quick guide to get started with the framework: ! doc/getting_started.txt If you are curious about the ready-to-use components that come with the framework, please review the components overview: ! doc/components.txt :'repos': This directory contains the so-called source-code repositories of Genode. Please refer to the README file in the 'repos' directory to learn more about the roles of the individual repositories. :'tool': Source-code management tools and scripts. Please refer to the README file contained in the directory. Contact ####### The best way to get in touch with Genode developers and users is the project's mailing list. Please feel welcome to join in! :Genode Mailing Lists: [http://genode.org/community/mailing-lists]
Description
Languages
C++
73.9%
C
17.8%
Makefile
4.4%
Tcl
1.3%
PHP
0.9%
Other
1.5%