mirror of
https://github.com/genodelabs/genode.git
synced 2025-01-31 16:35:28 +00:00
Stefan Kalkowski
040cd95580
noux: fix context-area re-initialization in fork
With commit e74b53d5dd92cc0f9f636b0233de9f32376010b6 the fork semantic in noux changed slightly, and broke platforms like hw & sel4, where the UTCB is mapped directly into the thread's context area. The change moved the re-initialization to a point where the new noux process' thread stack-pointer was already switched back to the context area. But to re-initialize the context area RPC calls must be done, and the UTCB must be used therefore. On the other side the UTCB is found implicitly by the stack-pointer, whereby a stack-pointer located in the context-area refers to a UTCB that is expected to reside in the context-area as well. But the UTCB gets overlayed inside the context area by the context-area's re-initialization - we've come round in a circle. This commit rolls back the move of the re-initialization routine. To preserve the intention of the original commit, the context-area location is stored in a static variable, so that the Native_config API is not needed anymore. Fix #1851
================================= Genode Operating System Framework ================================= This is the source tree of the reference implementation of the Genode OS architecture. For a general overview about the architecture, please refer to the project's official website: :Official project website for the Genode OS Framework: [http://genode.org/documentation/general-overview] The current implementation can be compiled for 8 different kernels: Linux, L4ka::Pistachio, L4/Fiasco, OKL4, NOVA, Fiasco.OC, seL4, and a custom kernel for running Genode directly on ARM-based hardware. Whereas the Linux version serves us as development vehicle and enables us to rapidly develop the generic parts of the system, the actual target platforms of the framework are microkernels. There is no "perfect" microkernel - and neither should there be one. If a microkernel pretended to be fit for all use cases, it wouldn't be "micro". Hence, all microkernels differ in terms of their respective features, complexity, and supported hardware architectures. Genode allows the use of each of the kernels listed above with a rich set of device drivers, protocol stacks, libraries, and applications in a uniform way. For developers, the framework provides an easy way to target multiple different kernels instead of tying the development to a particular kernel technology. For kernel developers, Genode contributes advanced workloads, stress-testing their kernel, and enabling a variety of application use cases that would not be possible otherwise. For users and system integrators, it enables the choice of the kernel that fits best with the requirements at hand for the particular usage scenario. Directory overview ################## The source tree is composed of the following subdirectories: :'doc': This directory contains general documentation. Please consider the following document for a quick guide to get started with the framework: ! doc/getting_started.txt If you are curious about the ready-to-use components that come with the framework, please review the components overview: ! doc/components.txt :'repos': This directory contains the so-called source-code repositories of Genode. Please refer to the README file in the 'repos' directory to learn more about the roles of the individual repositories. :'tool': Source-code management tools and scripts. Please refer to the README file contained in the directory. Contact ####### The best way to get in touch with Genode developers and users is the project's mailing list. Please feel welcome to join in! :Genode Mailing Lists: [http://genode.org/community/mailing-lists]
Languages
C++
73.8%
C
17.9%
Makefile
4.4%
Tcl
1.3%
PHP
1%
Other
1.4%