/* * \brief Data structure for storing sparse files in RAM * \author Norman Feske * \date 2012-04-18 */ /* * Copyright (C) 2012-2017 Genode Labs GmbH * * This file is part of the Genode OS framework, which is distributed * under the terms of the GNU Affero General Public License version 3. */ #ifndef _INCLUDE__RAM_FS__CHUNK_H_ #define _INCLUDE__RAM_FS__CHUNK_H_ /* Genode includes */ #include #include #include #include namespace File_system { using namespace Genode; using Genode::Noncopyable; class Chunk_base; template class Chunk; template class Chunk_index; } /** * Common base class of both 'Chunk' and 'Chunk_index' */ class File_system::Chunk_base : Noncopyable { public: class Index_out_of_range { }; /* * Use 'size_t' instead of 'seek_off_t' because we can never seek * outside the addressable RAM */ struct Seek { size_t value; }; protected: Seek const _base_offset { ~0UL }; size_t _num_entries = 0; /* corresponds to last used entry */ /** * Test if specified range lies within the chunk */ void assert_valid_range(Seek start, size_t len, size_t chunk_size) const { if (zero()) return; if (start.value < _base_offset.value) throw Index_out_of_range(); if (start.value + len > _base_offset.value + chunk_size) throw Index_out_of_range(); } Chunk_base(Seek base_offset) : _base_offset(base_offset) { } /** * Construct zero chunk * * A zero chunk is a chunk that cannot be written to. When reading * from it, it returns zeros. Because there is a single zero chunk * for each chunk type, the base offset is meaningless. We use a * base offset of ~0 as marker to identify zero chunks. */ Chunk_base() { } public: /** * Return absolute base offset of chunk in bytes */ Seek base_offset() const { return _base_offset; } /** * Return true if chunk is a read-only zero chunk */ bool zero() const { return _base_offset.value == ~0UL; } /** * Return true if chunk has no allocated sub chunks */ bool empty() const { return _num_entries == 0; } }; /** * Chunk of bytes used as leaf in hierarchy of chunk indices */ template class File_system::Chunk : public Chunk_base { private: char _data[CHUNK_SIZE]; public: enum { SIZE = CHUNK_SIZE }; /** * Construct byte chunk * * \param base_offset absolute offset of chunk in bytes * * The first argument is unused. Its mere purpose is to make the * signature of the constructor compatible to the constructor * of 'Chunk_index'. */ Chunk(Allocator &, Seek base_offset) : Chunk_base(base_offset) { memset(_data, 0, CHUNK_SIZE); } /** * Construct zero chunk */ Chunk() { } /** * Return number of used entries * * The returned value corresponds to the index of the last used * entry + 1. It does not correlate to the number of actually * allocated entries (there may be ranges of zero blocks). */ size_t used_size() const { return _num_entries; } void write(Const_byte_range_ptr const &src, Seek at) { assert_valid_range(at, src.num_bytes, SIZE); /* offset relative to this chunk */ size_t const local_offset = at.value - base_offset().value; memcpy(&_data[local_offset], src.start, src.num_bytes); _num_entries = max(_num_entries, local_offset + src.num_bytes); } void read(Byte_range_ptr const &dst, Seek at) const { assert_valid_range(at, dst.num_bytes, SIZE); memcpy(dst.start, &_data[at.value - base_offset().value], dst.num_bytes); } void truncate(Seek at) { assert_valid_range(at, 0, SIZE); /* * Offset of the first free position (relative to the beginning * this chunk). */ size_t const local_offset = at.value - base_offset().value; if (local_offset >= _num_entries) return; memset(&_data[local_offset], 0, _num_entries - local_offset); _num_entries = local_offset; } }; template class File_system::Chunk_index : public Chunk_base { public: using Entry = ENTRY_TYPE; enum { ENTRY_SIZE = ENTRY_TYPE::SIZE, SIZE = ENTRY_SIZE*NUM_ENTRIES }; private: /* * Noncopyable */ Chunk_index(Chunk_index const &); Chunk_index &operator = (Chunk_index const &); Allocator &_alloc; Entry * _entries[NUM_ENTRIES]; /** * Return instance of a zero sub chunk */ static Entry const &_zero_chunk() { static Entry zero_chunk; return zero_chunk; } /** * Return sub chunk at given index * * If there is no sub chunk at the specified index, this function * transparently allocates one. Hence, the returned sub chunk * is ready to be written to. */ Entry &_entry_for_writing(unsigned index) { if (index >= NUM_ENTRIES) throw Index_out_of_range(); if (_entries[index]) return *_entries[index]; Seek const entry_offset { base_offset().value + index*ENTRY_SIZE }; _entries[index] = new (&_alloc) Entry(_alloc, entry_offset); _num_entries = max(_num_entries, index + 1); return *_entries[index]; } /** * Return sub chunk at given index (for reading only) * * This function transparently provides a zero sub chunk for any * index that is not populated by a real chunk. */ Entry const &_entry_for_reading(unsigned index) const { if (index >= NUM_ENTRIES) throw Index_out_of_range(); if (_entries[index]) return *_entries[index]; return _zero_chunk(); } /** * Return index of entry located at specified byte offset * * The caller of this function must make sure that the offset * parameter is within the bounds of the chunk. */ unsigned _index_by_offset(Seek offset) const { return (unsigned)((offset.value - base_offset().value) / ENTRY_SIZE); } /** * Apply operation 'func' to a range of entries */ template static void _range_op(THIS &obj, RANGE_PTR const &range_ptr, Seek at, FUNC const &func) { /* * Depending on whether this function is called for reading * (const function) or writing (non-const function), the * operand type is const or non-const Entry. The correct type * is embedded as a trait in the 'FUNC' functor type. */ using Const_qualified_entry = typename FUNC::Entry; auto data_ptr = range_ptr.start; size_t len = range_ptr.num_bytes; obj.assert_valid_range(at, len, SIZE); while (len > 0) { unsigned const index = obj._index_by_offset(at); Const_qualified_entry &entry = FUNC::lookup(obj, index); /* * Calculate byte offset relative to the chunk * * We cannot use 'entry.base_offset()' for this calculation * because in the const case, the lookup might return a * zero chunk, which has no defined base offset. Therefore, * we calculate the base offset via index*ENTRY_SIZE. */ size_t const local_seek_offset = at.value - obj.base_offset().value - index*ENTRY_SIZE; /* available capacity at 'entry' starting at seek offset */ size_t const capacity = ENTRY_SIZE - local_seek_offset; size_t const curr_len = min(len, capacity); /* apply functor (read or write) to entry */ func(entry, RANGE_PTR(data_ptr, curr_len), at); /* advance to next entry */ len -= curr_len; data_ptr += curr_len; at.value += curr_len; } } struct Write_func { using Entry = ENTRY_TYPE; static Entry &lookup(Chunk_index &chunk, unsigned i) { return chunk._entry_for_writing(i); } void operator () (Entry &entry, Const_byte_range_ptr const &src, Seek at) const { entry.write(src, at); } }; struct Read_func { using Entry = ENTRY_TYPE const; static Entry &lookup(Chunk_index const &chunk, unsigned i) { return chunk._entry_for_reading(i); } void operator () (Entry &entry, Byte_range_ptr const &dst, Seek at) const { if (entry.zero()) memset(dst.start, 0, dst.num_bytes); else entry.read(dst, at); } }; void _init_entries() { for (unsigned i = 0; i < NUM_ENTRIES; i++) _entries[i] = 0; } void _destroy_entry(unsigned i) { if (_entries[i] && (i < _num_entries)) { destroy(&_alloc, _entries[i]); _entries[i] = 0; } } public: /** * Constructor * * \param alloc allocator to use for allocating sub-chunk * indices and chunks * \param base_offset absolute offset of the chunk in bytes */ Chunk_index(Allocator &alloc, Seek base_offset) : Chunk_base(base_offset), _alloc(alloc) { _init_entries(); } /** * Construct zero chunk */ Chunk_index() : _alloc(*(Allocator *)0) { } /** * Destructor */ ~Chunk_index() { for (unsigned i = 0; i < NUM_ENTRIES; i++) _destroy_entry(i); } /** * Return size of chunk in bytes * * The returned value corresponds to the position after the highest * offset that was written to. */ size_t used_size() const { if (_num_entries == 0) return 0; /* size of entries that lie completely within the used range */ size_t const size_whole_entries = ENTRY_SIZE*(_num_entries - 1); Entry *last_entry = _entries[_num_entries - 1]; if (!last_entry) return size_whole_entries; return size_whole_entries + last_entry->used_size(); } /** * Write data to chunk */ void write(Const_byte_range_ptr const &src, Seek at) { _range_op(*this, src, at, Write_func()); } /** * Read data from chunk */ void read(Byte_range_ptr const &dst, Seek at) const { _range_op(*this, dst, at, Read_func()); } /** * Truncate chunk to specified size in bytes * * This function can be used to shrink a chunk only. Specifying a * 'size' larger than 'used_size' has no effect. The value returned * by 'used_size' refers always to the position of the last byte * written to the chunk. */ void truncate(Seek at) { unsigned const trunc_index = _index_by_offset(at); if (trunc_index >= _num_entries) return; for (unsigned i = trunc_index + 1; i < _num_entries; i++) _destroy_entry(i); /* traverse into sub chunks */ if (_entries[trunc_index]) _entries[trunc_index]->truncate(at); _num_entries = trunc_index + 1; /* * If the truncated at a chunk boundary, we can release the * empty trailing chunk at 'trunc_index'. */ if (_entries[trunc_index] && _entries[trunc_index]->empty()) { _destroy_entry(trunc_index); _num_entries--; } } }; #endif /* _INCLUDE__RAM_FS__CHUNK_H_ */