/* * \brief Generic MMIO access framework * \author Martin stein * \date 2011-10-26 */ /* * Copyright (C) 2011-2013 Genode Labs GmbH * * This file is part of the Genode OS framework, which is distributed * under the terms of the GNU General Public License version 2. */ #ifndef _INCLUDE__UTIL__MMIO_H_ #define _INCLUDE__UTIL__MMIO_H_ /* Genode includes */ #include namespace Genode { /** * A continuous MMIO region * * For correct behavior of the member functions of 'Mmio', a class that * derives from one of the subclasses of 'Mmio' must not define members * named 'Register_base', 'Bitfield_base', 'Register_array_base' or * 'Array_bitfield_base'. */ class Mmio { /* * If set 0 verbosity isn't needed at all and the enum enables the * compiler to remove all verbosity code. If set 1 verbosity code * gets compiled and is then switched via '*_verbose' member variables. */ enum { VERBOSITY_AVAILABLE = 0 }; /** * Proclaim a MMIO access * * \param _ACCESS_T integer type of access * \param dst access destination * \param v access value * \param w 1: write access 0: read access */ template inline void _access_verbosity(addr_t const dst, _ACCESS_T const v, bool const w) const { if (!VERBOSITY_AVAILABLE) return; if (!_write_verbose) return; printf("mmio %s 0x%p: 0x", w ? "write" : "read ", (void *)dst); Trait::Uint_type<_ACCESS_T>::print_hex(v); printf("\n"); } /** * Write '_ACCESS_T' typed 'value' to MMIO base + 'o' */ template inline void _write(off_t const o, _ACCESS_T const value) { addr_t const dst = (addr_t)base + o; _access_verbosity<_ACCESS_T>(dst, value, 1); *(_ACCESS_T volatile *)dst = value; } /** * Read '_ACCESS_T' typed from MMIO base + 'o' */ template inline _ACCESS_T _read(off_t const o) const { addr_t const dst = (addr_t)base + o; _ACCESS_T const value = *(_ACCESS_T volatile *)dst; _access_verbosity<_ACCESS_T>(dst, value, 0); return value; } protected: /* * If VERBOSITY_AVAILABLE is set MMIO isn't verbose by default. * Instead it causes this switches to be asked everytime MMIO * could be verbose. This way the user can either enable verbosity * locally by overwriting them in a deriving class or change their * initialization temporarily to enable verbosity globally and * then supress it locally by overwriting it. */ bool _write_verbose; bool _read_verbose; public: enum { BYTE_WIDTH_LOG2 = 3, BYTE_WIDTH = 1 << BYTE_WIDTH_LOG2 }; /** * An integer like region within a MMIO region. * * \param _OFFSET Offset of the region relative to the * base of the compound MMIO. * \param _ACCESS_WIDTH Bit width of the region, for a list of * supported widths see 'Genode::Register'. * \param _STRICT_WRITE If set to 0, when writing a bitfield, we * read the register value, update the bits * on it, and write it back to the register. * If set to 1 we take an empty register * value instead, apply the bitfield on it, * and write it to the register. This can * be useful if you have registers that have * different means on reads and writes. * * For further details See 'Genode::Register'. */ template struct Register : public Genode::Register<_ACCESS_WIDTH> { enum { OFFSET = _OFFSET, ACCESS_WIDTH = _ACCESS_WIDTH, STRICT_WRITE = _STRICT_WRITE, }; /* * GCC 4.4, in contrast to GCC versions >= 4.5, can't * select function templates like 'write(typename * T::Register::access_t value)' through a given 'T' * that, in this case, derives from 'Register'. * It seems this is due to the fact that 'T::Register' * is a template. Thus we provide some kind of stamp * that solely must not be redefined by the deriving * class to ensure correct template selection. */ typedef Register<_OFFSET, _ACCESS_WIDTH, _STRICT_WRITE> Register_base; /** * A region within a register * * \param _SHIFT Bit shift of the first bit within the * compound register. * \param _WIDTH bit width of the region * * For details see 'Genode::Register::Bitfield'. */ template struct Bitfield : public Genode::Register:: template Bitfield<_SHIFT, _WIDTH> { /* analogous to 'Mmio::Register::Register_base' */ typedef Bitfield<_SHIFT, _WIDTH> Bitfield_base; /* back reference to containing register */ typedef Register<_OFFSET, _ACCESS_WIDTH, _STRICT_WRITE> Compound_reg; }; }; /** * An array of successive equally structured regions, called items * * \param _OFFSET Offset of the first item relative to * the base of the compound MMIO. * \param _ACCESS_WIDTH Bit width of a single access, must be at * least the item width. * \param _ITEMS How many times the item gets iterated * successively. * \param _ITEM_WIDTH bit width of an item * \param _STRICT_WRITE If set to 0, when writing a bitfield, we * read the register value, update the bits * on it, and write it back to the register. * If set to 1, we take an empty register * value instead, apply the bitfield on it, * and write it to the register. This can * be useful if you have registers that have * different means on reads and writes. * Please note that ACCESS_WIDTH is decisive * for the range of such strictness. * * The array takes all inner structures, wich are covered by an * item width and iterates them successively. Such structures that * are partially exceed an item range are read and written also * partially. Structures that are completely out of the item range * are read as '0' and trying to overwrite them has no effect. The * array is not limited to its access width, it extends to the * memory region of its successive items. Trying to read out read * with an item index out of the array range returns '0', trying * to write to such indices has no effect. */ template struct Register_array : public Register<_OFFSET, _ACCESS_WIDTH, _STRICT_WRITE> { typedef typename Trait::Uint_width<_ACCESS_WIDTH>:: template Divisor<_ITEM_WIDTH> Item; enum { STRICT_WRITE = _STRICT_WRITE, OFFSET = _OFFSET, ACCESS_WIDTH = _ACCESS_WIDTH, ITEMS = _ITEMS, ITEM_WIDTH = _ITEM_WIDTH, ITEM_WIDTH_LOG2 = Item::WIDTH_LOG2, MAX_INDEX = ITEMS - 1, ITEM_MASK = (1ULL << ITEM_WIDTH) - 1, }; /* analogous to 'Mmio::Register::Register_base' */ typedef Register_array Register_array_base; typedef typename Register:: access_t access_t; /** * A bitregion within a register array item * * \param _SHIFT bit shift of the first bit within an item * \param _WIDTH bit width of the region * * For details see 'Genode::Register::Bitfield'. */ template struct Bitfield : public Register:: template Bitfield<_SHIFT, _SIZE> { /* analogous to 'Mmio::Register::Register_base' */ typedef Bitfield<_SHIFT, _SIZE> Array_bitfield_base; /* back reference to containing register array */ typedef Register_array Compound_array; }; /** * Calculate destination of an array-item access * * \param offset Gets overridden with the offset of the * access type instance, that contains the * access destination, relative to the MMIO * base. * \param shift Gets overridden with the shift of the * destination within the access type instance * targeted by 'offset'. * \param index index of the targeted array item */ static inline void dst(off_t & offset, unsigned long & shift, unsigned long const index) { unsigned long const bit_off = index << ITEM_WIDTH_LOG2; offset = (off_t) ((bit_off >> BYTE_WIDTH_LOG2) & ~(sizeof(access_t)-1) ); shift = bit_off - ( offset << BYTE_WIDTH_LOG2 ); offset += OFFSET; } /** * Calc destination of a simple array-item access without shift * * \param offset gets overridden with the offset of the the * access destination, relative to the MMIO base * \param index index of the targeted array item */ static inline void simple_dst(off_t & offset, unsigned long const index) { offset = (index << ITEM_WIDTH_LOG2) >> BYTE_WIDTH_LOG2; offset += OFFSET; } }; addr_t const base; /* base address of targeted MMIO region */ /** * Constructor * * \param mmio_base base address of targeted MMIO region */ inline Mmio(addr_t mmio_base) : _write_verbose(0), _read_verbose(0), base(mmio_base) { } /************************* ** Access to registers ** *************************/ /** * Get the address of the register 'T' typed as its access type */ template inline typename T::Register_base::access_t volatile * typed_addr() const { typedef typename T::Register_base Register; typedef typename Register::access_t access_t; return (access_t volatile *)(base + Register::OFFSET); } /** * Read the register 'T' */ template inline typename T::Register_base::access_t read() const { typedef typename T::Register_base Register; typedef typename Register::access_t access_t; return _read(Register::OFFSET); } /** * Override the register 'T' */ template inline void write(typename T::Register_base::access_t const value) { typedef typename T::Register_base Register; typedef typename Register::access_t access_t; _write(Register::OFFSET, value); } /****************************************** ** Access to bitfields within registers ** ******************************************/ /** * Read the bitfield 'T' of a register */ template inline typename T::Bitfield_base::Compound_reg::access_t read() const { typedef typename T::Bitfield_base Bitfield; typedef typename Bitfield::Compound_reg Register; typedef typename Register::access_t access_t; return Bitfield::get(_read(Register::OFFSET)); } /** * Override to the bitfield 'T' of a register * * \param value value that shall be written */ template inline void write(typename T::Bitfield_base::Compound_reg::access_t const value) { typedef typename T::Bitfield_base Bitfield; typedef typename Bitfield::Compound_reg Register; typedef typename Register::access_t access_t; /* initialize the pattern written finally to the register */ access_t write_value; if (Register::STRICT_WRITE) { /* apply the bitfield to an empty write pattern */ write_value = 0; } else { /* apply the bitfield to the old register value */ write_value = read(); Bitfield::clear(write_value); } /* apply bitfield value and override register */ Bitfield::set(write_value, value); write(write_value); } /******************************* ** Access to register arrays ** *******************************/ /** * Read an item of the register array 'T' * * \param index index of the targeted item */ template inline typename T::Register_array_base::access_t read(unsigned long const index) const { typedef typename T::Register_array_base Array; typedef typename Array::access_t access_t; /* reads outside the array return 0 */ if (index > Array::MAX_INDEX) return 0; /* if item width equals access width we optimize the access */ off_t offset; if (Array::ITEM_WIDTH == Array::ACCESS_WIDTH) { Array::simple_dst(offset, index); return _read(offset); /* access width and item width differ */ } else { long unsigned shift; Array::dst(offset, shift, index); return (_read(offset) >> shift) & Array::ITEM_MASK; } } /** * Override an item of the register array 'T' * * \param value value that shall be written * \param index index of the targeted item */ template inline void write(typename T::Register_array_base::access_t const value, unsigned long const index) { typedef typename T::Register_array_base Array; typedef typename Array::access_t access_t; /* ignore writes outside the array */ if (index > Array::MAX_INDEX) return; /* optimize the access if item width equals access width */ off_t offset; if (Array::ITEM_WIDTH == Array::ACCESS_WIDTH) { Array::simple_dst(offset, index); _write(offset, value); /* access width and item width differ */ } else { long unsigned shift; Array::dst(offset, shift, index); /* insert new value into old register value */ access_t write_value; if (Array::STRICT_WRITE) { /* apply bitfield to an empty write pattern */ write_value = 0; } else { /* apply bitfield to the old register value */ write_value = _read(offset); write_value &= ~(Array::ITEM_MASK << shift); } /* apply bitfield value and override register */ write_value |= (value & Array::ITEM_MASK) << shift; _write(offset, write_value); } } /***************************************************** ** Access to bitfields within register array items ** *****************************************************/ /** * Read the bitfield 'T' of a register array * * \param index index of the targeted item */ template inline typename T::Array_bitfield_base::Compound_array::access_t read(unsigned long const index) const { typedef typename T::Array_bitfield_base Bitfield; typedef typename Bitfield::Compound_array Array; return Bitfield::get(read(index)); } /** * Override the bitfield 'T' of a register array * * \param value value that shall be written * \param index index of the targeted array item */ template inline void write(typename T::Array_bitfield_base::Compound_array::access_t const value, long unsigned const index) { typedef typename T::Array_bitfield_base Bitfield; typedef typename Bitfield::Compound_array Array; typedef typename Array::access_t access_t; /* initialize the pattern written finally to the register */ access_t write_value; if (Array::STRICT_WRITE) { /* apply the bitfield to an empty write pattern */ write_value = 0; } else { /* apply the bitfield to the old register value */ write_value = read(index); Bitfield::clear(write_value); } /* apply bitfield value and override register */ Bitfield::set(write_value, value); write(write_value, index); } /********************************* ** Polling for bitfield states ** *********************************/ /** * Interface for delaying the execution of a calling thread */ struct Delayer { /** * Delay execution of the caller for 'us' microseconds */ virtual void usleep(unsigned us) = 0; }; /** * Wait until register 'T' contains the specified 'value' * * \param value value to wait for * \param delayer sleeping facility to be used when the * value is not reached yet * \param max_attempts number of register probing attempts * \param us number of microseconds between attempts */ template inline bool wait_for(typename T::Register_base::access_t const value, Delayer & delayer, unsigned max_attempts = 500, unsigned us = 1000) { typedef typename T::Register_base Register; for (unsigned i = 0; i < max_attempts; i++, delayer.usleep(us)) { if (read() == value) return true; } return false; } /** * Wait until bitfield 'T' contains the specified 'value' * * \param value value to wait for * \param delayer sleeping facility to be used when the * value is not reached yet * \param max_attempts number of bitfield probing attempts * \param us number of microseconds between attempts */ template inline bool wait_for(typename T::Bitfield_base::Compound_reg::access_t const value, Delayer & delayer, unsigned max_attempts = 500, unsigned us = 1000) { typedef typename T::Bitfield_base Bitfield; for (unsigned i = 0; i < max_attempts; i++, delayer.usleep(us)) { if (read() == value) return true; } return false; } }; } #endif /* _INCLUDE__UTIL__MMIO_H_ */