Replace the USB session API by one that provides a devices ROM only,
which contains information about all USB devices available for this client,
as well as methods to acquire and release a single device.
The acquisition of an USB device returns the capability to a device session
that includes a packet stream buffer to communicate control transfers
in between the client and the USB host controller driver. Moreover,
additional methods to acquire and release an USB interface can be used.
The acquisition of an USB interface returns the capability to an interface
session that includes a packet stream buffer to communicate either
bulk, interrupt, or isochronous transfers in between the client and the
USB host controller driver.
This commit implements the API changes in behalf of the Genode C API's
USB server and client side. Addtionally, it provides Usb::Device,
Usb::Interface, and Usb::Endpoint utilities that can be used by native
C++ clients to use the new API and hide the sophisticated packet stream API.
The adaptations necessary target the following areas:
* lx_emul layer for USB host and client side
* Linux USB host controller driver port for PC
* Linux USB client ports: usb_hid_drv and usb_net_drv, additionally
reduce the Linux tasks used inside these drivers
* Native usb_block_drv
* black_hole component
* Port of libusb, including smartcard and usb_webcam driver depending on it
* Port of Qemu XHCI model library, including vbox5 & vbox6 depending on it
* Adapt all run-scripts and drivers_interactive recipes to work
with the new policy rules of the USB host controller driver
Fixgenodelabs/genode#5021
The key element of the improvement is differentiated processing of
events of the following device types.
Mouse: relative motion
Pointer: absolute motion (Qemu usb-tablet and IP-KVM devices)
Touchpad: relative motion via absolute touchpad coordinates
Touchtool: absolute motion (e.g., stylus)
Touchscreen: absolute motion and finger (multi-) touch
Processing is done in two stages for one "input packet". First, all
events of the packet are recorded into the current evdev state with
device-type specific operations. Then, appropriate Genode input events
are generated from the accumulated evdev state in the submission stage
(again by device-type specific functions).
A simple version of tap-to-click was added to the touchpad support.
Fixes#5105
Several nightly network-related tests fail currently on sel4/pc because the
new e1000 NIC driver requires more capabilities. The "drivers nic" package
was already adapted to the new requirement but some tests fail to provide
enough caps to the corresponding sub system. This commit tries to fix all
remaining tests.
Ref #4923
Since the wireless LAN driver is actually a 'Libc::Component' due to
its incorporation of the 'wpa_spplicant' application, we have to
intercept its construction because we have to initialize the Lx_kit
environment before any static ctors are executed. Most Linux initcalls
are implemented as ctors that will be otherwise implicitly executed
before the controll is given to us in 'Libc::Component::construct'.
Issue #4927.
This commit changes the firmware handling from requesting each
firmware file as a ROM module that is checked against a list of
known images (including their size) to requesting each file via
the local VFS of the 'wifi_drv'. This allows for using the original
probing mechanism that tries to select a matching firmware version.
The 'repos/dde_linux/src/drivers/wifi/README' file contains more
detailed information on how to configure the driver.
Issue #4861.
The bulk of the driver code now lives in the 'dde_linux' repository,
which is available on all platforms, from where it can be referenced by
other repositories.
The 'wifi_drv' binary was delegated to a generic harness that includes
all configuration and management functionality shared by all wireless
device driver components, e.g., the wpa_supplicant. The code of the
device driver emulation environment is located in 'src/lib/wifi'. It
is referenced by the platform-specific driver library that resides in
the corresponding platform repository. The runtime configuration needs
to point the driver to proper driver library.
The platform-specific library is in charge of orchestrating the contrib
source utilized by the driver as well as providing the 'source.list'
and 'dep.list' files. It must include the generic library snippet
'repos/dde_linux/lib/wifi.inc' that deals with managing the emulation
environment code.
The 'repos/dde_linux/src/drivers/wifi/README' file contains more
detailed information on how to deploy the driver.
Issue #4861.
"-cpu phenom" does not support all CPU instructions necessary with
gcc 12 toolchain update issuing more SSSE3, e.g. pshufb.
Additionally, remove good/bad Qemu version check of outdated versions.
Issue genodelabs/genode-world#329
This networking scenario is useful for analysing and optimizing the
interplay of the VFS, libc, TCP/IP, and the NIC router. It downloads a
file via fetchurl from lighttpd, both of which are hosted on a virtual
network.
Issue #4697
With the increase of MAXPHYS, the rump kernel requests a contiguous
allocation of 2101248 bytes, which exceeds the allocator's block size of
2 MiB.
Error: backend allocator: Unable to allocate memory (size: 2101248 align: 12)
The patch avoids this corner case by increasing the allocator's block
size to 4 MiB.
Fixes#4613
Instead of having a generic "virt_qemu" board use "virt_qemu_<arch>" in
order to have a clean distinction between boards. Current supported
boards are "virt_qemu_arm_v7a", "virt_qemu_arm_v8a", and
"virt_qemu_riscv".
issue #4034