Both, trace_logger and vfs_trace had their own trace_buffer.h. This
commit consolidates the existing implementations and provides the
resulting trace_buffer.h at 'include/trace/'. It thereby becomes part of
the trace api archive.
genodelabs/genode#4244
If the trace subjects are not properly destructed when the TRACE client
disappears, enabled sources will be owned by a non-existing client.
In other words, when a TRACE client disappears all sources owned by the
client must be disabled.
genodelabs/genode#4247
WARNING: BREAKS CONFIG COMPATIBILITY!
This commit changes the configuration interface of the NIC router in a way that
may break systems that use the component without proper adjustment!
How to adjust:
At each occurrence of the 'dns_server_from' attribute in a NIC router
configuration replace the attribute name with 'dns_config_from'. The attribute
value remains unaltered.
DETAILED DESCRIPTION
The new attribute name 'dns_config_from' reflects that also other aspects of
the DNS configuration of the denominated domain are used by the DHCP server
that holds the attribute. This commit is a preparation for forwarding also the
domain name (DHCP option 15) with the mechanism behind the attribute.
Ref #4246
* the GPU multiplexer now offers the platform service to the Intel
framebuffer driver (driver_manager)
* ajdusted drivers_managed-pc to hand out resources to the GPU driver
* adjust quotas
issue #4233
BREAKS CONFIG COMPATIBILITY:
This commit changes the configuration interface of the NIC router in a way that
may break systems that use the component without proper adjustment!
HOW TO ADJUST:
At each occurrence of the '<uplink ...>' tag in a NIC router configuration
replace the tag name 'uplink' with 'nic-client'. The rest of the tag stays the
same.
The term "uplink" for network interfaces in the router that have a NIC session
client as back end was introduced in a time when Uplink sessions didn't yet
exist. Now, they do and, although both an uplink and an Uplink session
normally describe a network session between router and network device driver,
they are based on two different service types (NIC and Uplink). This can easily
cause confusion when integrating the router (the <uplink> is not related to
Uplink sessions) or trying to understand its functioning (an 'Uplink' object
has nothing to do with the Uplink service).
Therefore, this commit introduces the more specific term "NIC client" for an
interface that is based on a NIC session requested by the router. This doesn't
imply any semantic changes at the NIC router. However, the commit also brings a
broader update of the router's README and removes the term "downlink" that was
used only in documentation to refer to interfaces backed by a NIC session
provided by the router. The term was only associated with this meaning because
it is the natural counterpart to an uplink. This isn't appropriate anymore as
the terms for interface types have moved to a more technical level.
The commit adjusts all scenarios in the basic Genode repositories properly.
Fixes#4238
This commit introduces a C-API to the Uplink session, as well as to
serve as a Block service. It can be used by drivers ported from
C-only projects, like the Linux kernel, or BSD kernels for instance.
Fix#4226
* The device XML information dataspace is only provided,
when the client's policy states `info="yes"`
* The device XM information gets changed to include the
physical resource names (I/O memory and IRQ addresses)
instead of virtual ids and page offset
Fix#4077
This API rework eases the access to memory-mapped I/O registers and
interrupts when using the platform driver. It introduces the notions of
- Platform::Device - one device obtained from a platform session
- Platform::Device::Mmio - locally-mapped MMIO registers of a device
- Platform::Device::Irq - interface for receiving device interrupts
The patch touches several drivers. Some drivers would require a
significant structural change to adopt the new API (e.g., net/virtio,
dde_linux drivers, imx gpio). In these cases, the patch adds
compatibility shims meant to be temporary. In other cases (e.g., imx
i2c), the adaptation was simple enough to carry through.
Fixes#4075
This commit replaces the hand-crafted config processing by the use of
the 'List_model' utility. This has the following advantages:
- The parsing follows a common formalism that makes the code
easier to maintain and to understand. Several parts of the code
had to be changed (for the better) to make it fit the list model
approach. E.g., the child states have become more expressive
and logical.
- In the common case, the XML data is traversed only once, which
increases the parsing speed in dynamic scenarios.
- The code becomes easier to optimize. In particular, the patch skips
the re-evaluation of the session routing if no service is affected
by the config change.
The patch also revisits the init test by removing overly long sleep
phases and extending a few sleep phases that were too short when
executing the test on Qemu.
Issue #4068
This patch fixes a corner case where a child is destructed while a
asynchronous close request to a sibling server is still pending.
The child immediately discarded the session ID as the end of the
close-session processing, assuming that this ID is never to be needed
again. The session-state continues to exist to handle asynchrous close
protocol with the server.
However, if the child is destructed at this point (before the server
responded to the session request), the destruction of the child would
not cover the discharging of the session state because the session state
was no longer be part of the client's ID space. So once the asynchronous
close response from the server came in, the session state contained
stale information, in particular a stale closed_callback pointer.
The patch fixes the problem by deferring the discarding of the client ID
to the point where the session state is actually destructed. So the
session of a pending close response is covered by the child destructor.
Thanks to Pirmin Duss for reporting this issue along with a test
scenario for reproducing it!
Fixes#4039
This shim component can be used in case where env sessions of child
(i.e., child's PD session) must be routed to another child of init.
Without the shim, init would directly need to interact with these
sessions and would thereby make itself dependent of the server's
behavior. RPC calls to a server hosted as a child lead to all kinds of
problems such as livelock situations, and putting the robustness of init
at the whim of its child.
With the shim, init merely needs to bootstrap the shim component by
routing the shim's env sessions to core as usual. The server is only
used for the sessions for the actual application hosted atop the shim.
Issue #3837
Issue #4029
* Add new virtio device model
* Extend test run-script with vfat block test image
* Add vmm depot src recipe
* Use packages in test run-script
Fix#4025
In order to perform a smooth transition from NIC drivers that act only as NIC
session clients to NIC drivers that act only as Uplink session clients, this
commit introduces an intermediate state in which all NIC drivers support both
modes. That said, a NIC drivers mode is now statically determined through a new
optional 'mode' attribute in the drivers <config> tag that can be set to either
'nic_server' (default value) or 'uplink_client'. Reconfiguring this attribute
at a driver doesn't have any effects. Whithout this attribute being set, all
NIC drivers will behave the same as they did before the commit. When set to
'uplink_client', however, instead of providing a Nic service, they request
an Uplink session whenever their network interface becomes "UP" and close the
session whenever their network interface becomes "DOWN".
Ref #3961
Let the NIC router provide an Uplink service besides the Nic service that it
already provided. Requests for an Uplink session towards the NIC router are
assigned to Domains using the same <policy> configuration tags that are used in
order to assign Nic session requests. The MAC addresses of Uplink session
components are _NOT_ considered during the allocation of MAC addresses for NIC
session components at the same Domain. The task of avoiding MAC address clashes
between Uplink session components and Nic session components is therefore left
to the integrator. Apart from that, Uplink session components are treated by
the NIC router like any other interface.
Ref #3961
Adds new Uplink session interface, the corresponding client side (Client,
Connection), and the corresponding API archives. An Uplink session is almost
the same as a NIC session with the difference that the roles of the end points
are swapped. An Uplink client is the one that provides a network interface
(for instance, a NIC driver) whereas an Uplink server is the one that uses
that network interface (for instance, a networking stack).
Therefore, in contrast to the NIC session, MAC address and link state come from
the Uplink client. The link state is reflected through the lifetime of an
Uplink session: The client requests the session only when the link state is
"UP" and closes it whenever the link state becomes "DOWN" again. The MAC
address is transmitted from the Uplink client to the Uplink server as an
argument of the session request.
Ref #3961
* Introduce CPU quota for driver subsytem (needed by sd_card_drv)
* Introduce CPU quota for runtime subsytem and nic_drv (needed by fec_nic_drv)
* Increase CAP quota for inspect terminal slightly
* Add sculpt packages for imx8q_evk
Fix#3958