This patch contains the initial code needed to build and bootstrap the
base-hw kernel on x86 64-bit platforms. It gets stuck earlier
because the binary contains 64-bit instructions, but it is started in
32-bit mode. The initial setup of page tables and switch to long mode is
still missing from the crt0 code.
To ease debugging without the need to tweak the kernel every time, and to
support userland developers with useful information this commit extends several
warnings and errors printed by the kernel/core by which thread/application
caused the problem, and what exactly failed.
Fix#1382Fix#1406
In the past, unmap sometimes occured on RM clients that have no thread,
PD, or translation table assigned. However, this shouldn't be the
case anymore.
Fixes#504
* Introduce hw-specific crt0 for core that calls e.g.: init_main_thread
* re-map core's main thread UTCB to fit the right context area location
* switch core's main thread's stack to fit the right context area location
Fix#1440
This decouples the size of the mode transition control region from the
minimal mapping size of the page tables implementation. Rather, the CPU
architecture is able to specify the actual size.
Rationale: For x86_64, we need the mtc region to span two pages in order
to store all the tables required to perform the mode switch.
For the USB-Armory, we use a newer version of Linux (3.18) as for the
i.MX53-QSB. The main difference is, that the newer Linux uses a DTB instead of
ATAGs.
Fixes#1422
The USB Armory is almost the same as the i.MX53-QSB but it uses only
one of the two RAM banks available in i.MX53. Furthermore we use the USB
Armory only with Trustzone enabled.
Ref #1422
* enables world-switch using ARM virtualization extensions
* split TrustZone and virtualization extensions hardly from platforms,
where it is not used
* extend 'Vm_session' interface to enable configuration of guest-physical memory
* introduce VM destruction syscall
* add virtual machine monitor for hw_arndale that emulates a simplified version
of ARM's Versatile Express Cortex A15 board for a Linux guest OS
Fixes#1405
To enable support of hardware virtualization for ARM on the Arndale board,
the cpu needs to be prepared to enter the non-secure mode, as long as it does
not already run in it. Therefore, especially the interrupt controller and
some TrustZone specific system registers need to be prepared. Moreover,
the exception vector for the hypervisor needs to be set up properly, before
booting normally in the supervisor mode of the non-secure world.
Ref #1405
The generalization of interrupt objects in the kernel and the use of
C++ polymorphism instead of explicitely checking for special interrupts
within generic code (Cpu_job::_interrupt) enables the registration of
additional interrupts used by the kernel, which are needed for specific
aspects added to the kernel, like ARM hardware virtualization interrupts.
* Introduce generic base class for interrupt objects handled by the kernel
* Derive an interrupt class for those handled by the user-land
* Implement IPI-specific interrupt class
* Implement timer interrupts using the new generic base class
Ref #1405
Until now, one distinct software generated IRQ per cpu was used to
send signals between cpus. As ARM's GIC has 16 software generated
IRQs only, and they need to be partitioned between secure/non-secure
TrustZone world as well as virtual and non-virtual worlds, we should
save them.
Ref #1405
* name irq controller memory mapped I/O regions consistently
in board descriptions
* move irq controller and timer memory mapped I/O region descriptions
from cpu class to board class
* eliminate artificial distinction between flavors of ARM's GIC
* factor cpu local initialization out of ARM's GIC interface description,
which is needed if the GIC is initialized differently e.g. for TrustZone
Ref #1405
Setting the ACTLR.SMP bit also without SMP support fastens RAM access
significantly. A proper solution would implement SMP support which must enable
the bit anyway.
Fixes#1353
When building Genode for VEA9X4 as micro-hypervisor protected by the ARM
TrustZone hardware we ran into limitations regarding our basic daily
testing routines. The most significant is that, when speaking about RAM
partitioning, the only available options are to configure the whole SRAM
to be secure and the whole DDR-RAM to be non-secure or vice versa. The
SRAM however provides only 32 MB which isn't enough for both a
representative non-secure guest OS or a secure Genode that is still
capable of passing our basic tests. This initiated our decision to
remove the VEA9X4 TrustZone-support.
Fixes#1351
On VEA9X4-TZ, the context-area overlaps with the virtual area of the
text, data and bss. However, we can't simply change the link address as
the core image (used physically respectively 1:1 mapped) needs to be in
this particular RAM-region as it is the only one that can be protected
against a VM. Thus I've moved the context area to a place where it
shouldn't disturb any HW-platform.
Fixes#1337
Declaring the SP804 0/1 module and its interrupt to be non-secure prevents the
secure Genode from receiving the interrupt and hence the timer driver in the
secure Genode doesn't work.
Fixes#1340
This fix configures TTBRs and translation-table descriptors as if we would use
SMP although we don't to circumvent problems with UP-configurations.
This fix should be superseded later by full SMP support for the VEA9X4.
ref #1312
The HW-kernel, in contrast to other kernels, provides a direct reference
to the pager object with the fault signal that is send to the pager
activation. When accessing this reference directly we may fall into the
time span where the root parent-entrypoint of the faulter has alredy
dissolved the pager object from the pager entrypoint, but not yet
silenced the according signal context. To avoid this we issue an
additional 'lookup_and_lock' with the received pager object. This isn't
optimal as we don't need the potentially cost-intensive lookup but only the
synchronization.
Fixes#1311.
Fixes#1332.
On base-hw, each thread owns exactly one scheduling context for its
whole lifetime. However, introducing helping on IPC, a thread might get
executed on scheduling contexts that it doesn't own. Figuratively
spoken, the IPC-helping relation spans trees between threads. These
trees are identical to those of the IPC relation between threads. The
root of such a tree is executed on all scheduling contexts in the tree.
All other threads in the tree are not executed on any scheduling context
as long as they remain in this position. Consequently, the ready-state
of all scheduling contexts in an IPC-helping tree always equals the
state of the root context.
fix#1102
As soon as helping is used, a thread may also be in a blocking state when its
scheduling context is ready. Hence, the state designation SCHEDULED for an active
thread would be pretty misleading.
ref #1102
On the Versatile Express Cortex A9x4 platform the first memory region
0x0 - 0x4000000 is a hardware remapped memory area, containing flash
and DDR RAM copies and thus should not be added in addition to all
DDR RAM regions and the SRAM region.
In the init configuration one can configure the donation of CPU time via
'resource' tags that have the attribute 'name' set to "CPU" and the
attribute 'quantum' set to the percentage of CPU quota that init shall
donate. The pattern is the same as when donating RAM quota.
! <start name="test">
! <resource name="CPU" quantum="75"/>
! </start>
This would cause init to try donating 75% of its CPU quota to the child
"test". Init and core do not preserve CPU quota for their own
requirements by default as it is done with RAM quota.
The CPU quota that a process owns can be applied through the thread
constructor. The constructor has been enhanced by an argument that
indicates the percentage of the programs CPU quota that shall be granted
to the new thread. So 'Thread(33, "test")' would cause the backing CPU
session to try to grant 33% of the programs CPU quota to the thread
"test". By now, the CPU quota of a thread can't be altered after
construction. Constructing a thread with CPU quota 0 doesn't mean the
thread gets never scheduled but that the thread has no guaranty to receive
CPU time. Such threads have to live with excess CPU time.
Threads that already existed in the official repositories of Genode were
adapted in the way that they receive a quota of 0.
This commit also provides a run test 'cpu_quota' in base-hw (the only
kernel that applies the CPU-quota scheme currently). The test basically
runs three threads with different physical CPU quota. The threads simply
count for 30 seconds each and the test then checks wether the counter
values relate to the CPU-quota distribution.
fix#1275
On Arndale, the kernel timer resets to the initial value of the last
count-down and continues as soon as it reaches zero. We must check this
via the interrupt status when we read out the timer value and in case
return 0 instead of the real value.
fix#1299
Kernel::Processor was a confusing remnant from the old scheme where we had a
Processor_driver (now Genode::Cpu) and a Processor (now Kernel::Cpu).
This commit also updates the in-code documentation and the variable and
function naming accordingly.
fix#1274