By separating the plain MMIO access implementation from the generic bit
and offset logic of registers, we can now use the latter also with other
types of register access like I2C. The register and MMIO front-ends have
not changed due to the separation.
Ref #2196
There was a race when the component entrypoint wanted to do
'wait_and_dispatch_one_signal'. In this function it raises a flag for
the signal proxy thread to notice that the entrypoint also wants to
block for signals. When the flag is set and the signal proxy wakes up
with a new signal, it tried to cancel the blocking of the entrypoint.
However, if the entrypoint had not reached the signal blocking at this
point, the cancel blocking failed without a solution. Now, the new
Kernel::cancel_next_signal_blocking call solves the problem by storing a
request to cancel the next signal blocking of a thread immediately
without blocking itself.
Ref #2284
If not dissolved in ~Entrypoint, the signal proxy is found within NOVA's
and FOC's object pool upon Rpc_entrypoint destruction. This leads to a
deadlock because the signal proxy is destructed before the RPC EP.
issue #2284
This patch ensures that the POLICY::release is called whenever the
session creation aborted with an exception. In the original version, an
exception like 'Quota_exceeded' caused a single-session root interface
to deny subsequent session requests.
This patch enhances the 'Child' and 'Child_policy' with the ability to
separate the different steps of bootstrapping children. If the
'Child_policy::initiate_env_sessions()' returns false, the child's
environment sessions remain unrouted at construction time. This way,
child objects for many children can be initialized to a state that
allows the children to represent services for other children. Therefore,
session routing can be applied before any child executes.
At this stage, the environment RAM sessions of all children can be
created. Note that this step still has the limitation that RAM sessions
are generally expected to be provided by either the parent or a local
service.
Once all children are equipped with RAM, they can in principle receive
session-quota donations. Hence, all other environment sessions can now
be arbitrarily routed and initiated.
Once the environment of a child is complete, the child's process and
initial thread is created.
This patch improves the accounting for the backing store of
session-state meta data. Originally, the session state used to be
allocated by a child-local heap partition fed from the child's RAM
session. However, whereas this approach was somehow practical from a
runtime's (parent's) point of view, the child component could not count
on the quota in its own RAM session. I.e., if the Child::heap grew at
the parent side, the child's RAM session would magically diminish. This
caused two problems. First, it violates assumptions of components like
init that carefully manage their RAM resources (and giving most of them
away their children). Second, if a child transfers most of its RAM
session quota to another RAM session (like init does), the child's RAM
session may actually not allow the parent's heap to grow, which is a
very difficult error condition to deal with.
In the new version, there is no Child::heap anymore. Instead, session
states are allocated from the runtime's RAM session. In order to let
children pay for these costs, the parent withdraws the local session
costs from the session quota donated from the child when the child
initiates a new session. Hence, in principle, all components on the
route of the session request take a small bite from the session quota to
pay for their local book keeping
Consequently, the session quota that ends up at the server may become
depleted more or less, depending on the route. In the case where the
remaining quota is insufficient for the server, the server responds with
'QUOTA_EXCEEDED'. Since this behavior must generally be expected, this
patch equips the client-side 'Env::session' implementation with the
ability to re-issue session requests with successively growing quota
donations.
For several of core's services (ROM, IO_MEM, IRQ), the default session
quota has now increased by 2 KiB, which should suffice for session
requests to up to 3 hops as is the common case for most run scripts. For
longer routes, the retry mechanism as described above comes into effect.
For the time being, we give a warning whenever the server-side quota
check triggers the retry mechanism. The warning may eventually be
removed at a later stage.
This method is a hook to enable a runtime to respond to state changes.
In particular, in init this hook is used to trigger the generation of a
new state report, if configured.
Furthermore, the patch introduces the 'generate_client_side_info' and
'generate_server_side_info' methods to the 'Session_state', which
generates an XML representation of the session states to appear in
reports produced by init.
Issue #2246
The new return value of 'resolve_session_request' allows the child
policy to define the label used as the policy selector at the server.
Because this patch introduces the distinction of the child-provided
label from the label as presented to the server along with the session
request, the latter is now handled as a dedicated 'Session_state'
argument.
Issue #2248
There existed a race when 'wait_and_dispatch_one_signal' is called form
a RPC context, because the 'signal_proxy' or 'main' will block and the
signal semaphore, when the EP then calls 'wait_and_dispatch_one_signal',
the signal proxy is woken up ands sends an RPC to the EP, leading to a
dead lock if no further signal arrive, because the EP will then remain
blocked in the signal semaphore.
Therefore, for this case, the signal proxy will now perform a semaphore
up operation and does not perform an RPC if the EP is within
'wait_and_dispatch_one_signal'.
A Signal_handler may schedule a hook function that is executed after the
signal handler returned. This can be used if the hook function may
trigger a (nested) signal handler by means of
wait_and_dispatch_one_signal(). Otherwise, an occurrence of the same
signal that triggered the original signal handler results in a dead lock
just before calling the nested handler (due to the Signal_context
destruction lock).
Put the initialization of the cpu cores, setup of page-tables, enabling of
MMU and caches into a separate component that is only used to bootstrap
the kernel resp. core.
Ref #2092
This hook allows the export of the allocator's state by a derrived
class. I.e., the final state of the allocator used for bootstrapping
core.
Ref #2092
First, calls to manage and dissolve signal contexts now check if the
signal receiver was constructed. There is a small window during suspend
where it is destructed before reconstructed again.
Last, we ensure that processing of incoming signal was deblocked by the
suspend signal before entering the suspend operation. This way we ensure
already queued signal are handled.
This commit enables compile-time warnings displayed whenever a deprecated
API header is included, and adjusts the existing #include directives
accordingly.
Issue #1987
This commit addresses the situation where an environment session
outlives the session-providing service. In this case, the env session
got already invaidated at the destruction time of the server. However,
the underlying session-state structure continues to exist until the
client is destructed. During the eventual destruction of such a dangling
environment session, we have to be careful not to interact with the
no-longer existing service.
Ref #2197
This patch enables warnings if one of the deprecate functions that rely
in the implicit use of the global Genode::env() accessor are called.
For the time being, some places within the base framework continue
to rely on the global function while omitting the warning by calling
'env_deprecated' instead of 'env'.
Issue #1987
This patch changes the child-construction procedure to allow the routing
of environment sessions to arbitrary servers, not only to the parent.
In particular, it restores the ability to route the LOG session of the
child to a LOG service provided by a child of init. In principle, it
becomes possible to also route the immediate child's PD, CPU, and RAM
environment sessions in arbitrary ways, which simplifies scenarios that
intercept those sessions, e.g., the CPU sampler.
Note that the latter ability should be used with great caution because
init needs to interact with these sessions to create/destruct the child.
Normally, the sessions are provided by the parent. So init is safe at
all times. If they are routed to a child however, init will naturally
become dependent on this particular child. For the LOG session, this is
actually not a problem because even though the parent creates the LOG
session as part of the child's environment, it never interacts with the
session directly.
Fixes#2197
This patch unconditionally applies the labeling of sessions and thereby
removes the most common use case of 'Child_policy::filter_session_args'.
Furthermore, the patch removes an ambiguity of the session labels of
sessions created by the parent of behalf of its child, e.g., the PD
session created as part of 'Child' now has the label "<child-name>"
whereas an unlabeled PD-session request originating from the child
has the label "<child-name> -> ". This way, the routing-policy of
'Child_policy::resolve_session_request' can differentiate both cases.
As a consequence, the stricter labeling must now be considered wherever
a precise label was specified as a key for a session route or a server-
side policy selection. The simplest way to adapt those cases is to use a
'label_prefix' instead of the 'label' attribute. Alternatively, the
'label' attribute may used by appending " -> " (note the whitespace).
Fixes#2171
This is a redesign of the root and parent interfaces to eliminate
blocking RPC calls.
- New session representation at the parent (base/session_state.h)
- base-internal root proxy mechanism as migration path
- Redesign of base/service.h
- Removes ancient 'Connection::KEEP_OPEN' feature
- Interface change of 'Child', 'Child_policy', 'Slave', 'Slave_policy'
- New 'Slave::Connection'
- Changed child-construction procedure to be compatible with the
non-blocking parent interface and to be easier to use
- The child's initial LOG session, its binary ROM session, and the
linker ROM session have become part of the child's envirenment.
- Session upgrading must now be performed via 'env.upgrade' instead
of performing a sole RPC call the parent. To make RAM upgrades
easier, the 'Connection' provides a new 'upgrade_ram' method.
Issue #2120
This data structure is meant as a safe alternative for a list wherever
the list is solely used to remember objects and iterate through them in
an unspecified order. One use case is the 'Service_registry'.
This data structure allows the association of objects with IDs. IDs are
kept in an AVL tree. So in contrast to a bit allocator, the ID space can be
sparsely populated and does not need to be dimensioned. The lifetime of
an ID is bound to an 'Element' object, which relieves the programmer
from manually allocating/deallocating IDs for objects.
Issue #2120
This patch is a preparation of the forthcoming async parent interface.
Note that this patch increases the size of connection objects.
Furthermore it adds a diagnostic message whenever a connection fails.
Issue #2166
Unfortunately, the volatile object does not inherit the noncopyable
attribute of the enclosed object. By making all volatile objects
noncopyable, we prevent the accidental copying of a noncopyable object
wrapped in a volatile object.
Replace 'dump()' debug utilities within Allocator_avl with Output::print
equivalents, and use the new Avl_tree::for_each utility to simplify
the implementation.
Ref #2159
This overload covers the common case for initializing a string from a
literal without employing the 'Output' mechanism. This way, such
strings can by constructed without calling virtual functions, which in
turn makes the 'String' usable for the 'init_rtld' phase of the dynamic
linker.
base generic code:
* Remove unused verbosity code from mmio framework
* Remove escape sequence end heuristic from LOG
* replace Core_console with Core_log (no format specifiers)
* move test/printf to test/log
* remove `printf()` tests from the log test
* check for exact match of the log test output
base-fiasco:
* remove unused Fiasco::print_l4_threadid function
base-nova:
* remove unused hexdump utility from core
base-hw:
* remove unused Kernel::Thread::_print_* debug utilities
* always print resource summary of core during startup
* remove Kernel::Ipc_node::pd_label (not used anymore)
base*:
* Turn `printf`,`PWRN`, etc. calls into their log equivalents
Ref #1987Fix#2119
Besides adapting the components to the use of base/log.h, the patch
cleans up a few base headers, i.e., it removes unused includes from
root/component.h, specifically base/heap.h and
ram_session/ram_session.h. Hence, components that relied on the implicit
inclusion of those headers have to manually include those headers now.
While adjusting the log messages, I repeatedly stumbled over the problem
that printing char * arguments is ambiguous. It is unclear whether to
print the argument as pointer or null-terminated string. To overcome
this problem, the patch introduces a new type 'Cstring' that allows the
caller to express that the argument should be handled as null-terminated
string. As a nice side effect, with this type in place, the optional len
argument of the 'String' class could be removed. Instead of supplying a
pair of (char const *, size_t), the constructor accepts a 'Cstring'.
This, in turn, clears the way let the 'String' constructor use the new
output mechanism to assemble a string from multiple arguments (and
thereby getting rid of snprintf within Genode in the near future).
To enforce the explicit resolution of the char * ambiguity, the 'char *'
overload of the 'print' function is marked as deleted.
Issue #1987
- remove special handling from base-nova
- add to rpc_server where it actually should be applied to
- required to work for sel4 cancel_blocking
Issue #2044
Those headers implement a platform-specific mechanism. They are never
used by components directly.
This patch also cleans up a few other remaining platform-specific
artifact such as the Fiasco.OC-specific assert.h.
Issue #1993
Conveying the ROM filename as the final label element simplifies
routing policy and session construction.
Annotations by nfeske:
This commit also changes the ROM session to use base/log.h instead of
base/printf.h, which produced build error of VirtualBox because the
vbox headers have a '#define Log', which collides with the content of
base/log.h. Hence, this commit has to take precautions to resolve this
conflict.
The commit alse refines the previous session-label change by adding a
new 'Session_label::prefix' method and removing the use of 'char const *'
from this part of the API.
Fixes#1787
Session_label constructor now takes a bare string rather than a
serialized argument buffer.
Replace all instances of previous constructor with 'label_from_args'
function.
Issue #1787
This patch establishes the sole use of generic headers across all
kernels. The common 'native_capability.h' is based on the version of
base-sel4. All traditional L4 kernels and Linux use the same
implementation of the capability-lifetime management. On base-hw, NOVA,
Fiasco.OC, and seL4, custom implementations (based on their original
mechanisms) are used, with the potential to unify them further in the
future.
This change achieves binary compatibility of dynamically linked programs
across all kernels.
Furthermore, the patch introduces a Native_capability::print method,
which allows the easy output of the kernel-specific capability
representation using the base/log.h API.
Issue #1993
This patch alleviates the need for a Native_capability::Dst at the API
level. The former use case of this type as argument to
Deprecated_env::reinit uses the opaque Native_capability::Raw type
instead. The 'Raw' type contains the portion of the capability that is
transferred as-is when delegating the capability (i.e., when installing
the parent capability into a new component, or when installing a new
parent capability into a new forked Noux process). This information can
be retrieved via the new Native_capability::raw method.
Furthermore, this patch moves the functions for retriving the parent
capability to base/internal/parent_cap.h, which is meant to be
implemented in platform-specific ways. It replaces the former set of
startup/internal/_main_parent_cap.h headers.
Issue #1993
The static 'Thread::mystack()' function returns the stack boundaries of
the calling thread. It is useful when a thread uses a diffent stack than
the primary one.
Fixes#2037
This patch introduces the Genode::raw function that prints output
directly via a low-level kernel mechanism, if available.
On base-linux, it replaces the former 'raw_write_str' function.
On base-hw, it replaces the former kernel/log.h interface.
Fixes#2012
The whole XML comment has to be parsed as one XML tag to support strange
but valid combinations like
<!---->
<!--invisible-tag></invisible-tag-->
Fixes#1424
Quota_exceeded message are of no use during session construction, since
the arguments of the ram_quota are used and no upgrade can take place (the
session construction failed and is so not available for upgrade)
Fixes#1983
This patch removes the outdates doc/architecture.txt since the
topics are covered by the book. We keep repos/os/doc/init.txt
because it contains a few details not present in the book (yet).
The patch streamlines the terminology a bit. Furthermore, it
slightly adjusts a few source-code comments to improve the book's
functional specification chapter.
* Adds public timeout syscalls to kernel API
* Kernel::timeout installs a timeout and binds a signal context to it that
shall trigger once the timeout expired
* With Kernel::timeout_max_us, one can get the maximum installable timeout
* Kernel::timeout_age_us returns the time that has passed since the
calling threads last timeout installation
* Removes all device specific back-ends for the base-hw timer driver and
implements a generic back-end taht uses the kernel timeout API
* Adds assertions about the kernel timer frequency that originate from the
requirements of the the kernel timeout API and adjusts all timers
accordingly by using the their internal dividers
* Introduces the Kernel::Clock class. As member of each Kernel::Cpu object
it combines the management of the timer of the CPU with a timeout scheduler.
Not only the timeout API uses the timeout scheduler but also the CPUs job
scheduler for installing scheduling timeouts.
* Introduces the Kernel::time_t type for timer tic values and values inherited
from timer tics (like microseconds).
Fixes#1972
- add a new function 'binary_ready_hook_for_gdb()' in ldso. GDB can set a
breakpoint at this function to know when ldso has loaded the binary
into memory.
- get the thread state from the NOVA kernel immediately on 'pause()'
Fixes#1968
This patch moves the thread operations from the 'Cpu_session'
to the 'Cpu_thread' interface.
A noteworthy semantic change is the meaning of the former
'exception_handler' function, which used to define both, the default
exception handler or a thread-specific signal handler. Now, the
'Cpu_session::exception_sigh' function defines the CPU-session-wide
default handler whereas the 'Cpu_thread::exception_sigh' function
defines the thread-specific one.
To retain the ability to create 'Child' objects without invoking a
capability, the child's initial thread must be created outside the
'Child::Process'. It is now represented by the 'Child::Initial_thread',
which is passed as argument to the 'Child' constructor.
Fixes#1939
This patch supplements each existing connection type with an new
constructor that is meant to replace the original one. The new
one takes a reference to the component's environment as argument and
thereby does not rely on the presence of the globally accessible
'env()' interface.
The original constructors are marked as deprecated. Once we have
completely abolished the use of the global 'env()', we will remove them.
Fixes#1960
It turns out that the name function does not have much use in practice
except for naming the thread of the component's initial entrypoint. For
dynamically linked components, this thread is created by the dynamic
linker. It is named "ep" in these cases. Considering that we will
eventually turn all regular components into dynamically linked
executables, the additional information provided by the
Component::name() function remains unused. So it is better to not bother
the component developers with adding boilerplate code.
This patch cleans up the thread API and comes with the following
noteworthy changes:
- Introduced Cpu_session::Weight type that replaces a formerly used
plain integer value to prevent the accidental mix-up of
arguments.
- The enum definition of Cpu_session::DEFAULT_WEIGHT moved to
Cpu_session::Weight::DEFAULT_WEIGHT
- New Thread constructor that takes a 'Env &' as first argument.
The original constructors are now marked as deprecated. For the
common use case where the default 'Weight' and 'Affinity' are
used, a shortcut is provided. In the long term, those two
constructors should be the only ones to remain.
- The former 'Thread<>' class template has been renamed to
'Thread_deprecated'.
- The former 'Thread_base' class is now called 'Thread'.
- The new 'name()' accessor returns the thread's name as 'Name'
object as centrally defined via 'Cpu_session::Name'. It is meant to
replace the old-fashioned 'name' method that takes a buffer and size
as arguments.
- Adaptation of the thread test to the new API
Issue #1954
This patch moves the base library from src/base to src/lib/base,
flattens the library-internal directory structure, and moves the common
parts of the library-description files to base/lib/mk/base.inc and
base/lib/mk/base-common.inc.
Furthermore, the patch fixes a few cosmetic issues (whitespace and
comments only) that I encountered while browsing the result.
Fixes#1952
Most slab allocators in core use a sliced heap as backing store. Since
sliced-heap allocations are performed at page-granularity, it is
sensible to dimension the slab blocks to fill whole pages.
This patch cleans up the implementation of the sliced heap, adds a
constructor that takes references instead of pointers, and adds the
function 'meta_data_size' to determine the meta-data overhead per block.
The latter can be used to dimension slab allocators such that slab
blocks use whole pages.