Every thread receives a startup message from its creator through the initial
state of its userland thread-context. The thread-startup code remembers the
kernel name of the new thread by reading this message before the userland
thread-context gets polluted. This way, Kernel::current_thread_id becomes
unnecessary.
fix#953
Don't set priority and label in platform thread and then communicate this
core object via Kernel::new_thread but communicate priority and label directly.
This way kernel doesn't need to know anymore what a platform thread is.
ref #953
Instead of writing initial thread context to the platform-thread members
and then communicating this core object to kernel, core calls
Kernel::access_thread_regs first to initialize thread context and then
Kernel::start_thread without a platform-thread pointer. This way
the frontend as well as the backend of Kernel::start_thread loose
complexity and it is a first step to remove platform thread from the
vocabulary of the kernel.
ref #953
Enable routing of thread events to signal contexts via
Kernel::route_thread_event.
Replace Kernel::set_pager by Kernel::route_thread_event.
In base-hw a pager object is a signal context and a pager activation
is a signal receiver. If a thread wants to start communicating its page
faults via a pager object, the thread calls Kernel::route_thread_event with
its thread ID, event ID "FAULT", and the signal context ID of the pager object.
If a pager activation wants to start handling page faults of a pager object,
the pager activation assigns the corresponding signal context to its signal
receiver. If a pager activation wants to stop handling page faults of a pager
object, the pager activation dissolves the corresponding signal context from
its signal receiver. If a thread wants to start communicating its page faults
via a pager object, the thread calls Kernel::route_thread_event with its
thread ID, event ID "FAULT", and the invalid signal context ID.
Remove Kernel::resume_faulter.
Move all page fault related code from generic kernel sources to CPU
specific cpu_support.h and cpu_support.cc.
fix#935
Merge core only libs into the target make-files.
Use base-hw specific Board drivers that inherit
from generic Board_base.
Use Page_flags::access_t instead of additional
page_flags_t.
Fix#570
By now there is no use case for read/write a single register
of a thread state. Thus the new syscalls 'read_thread_state' and
'write_thread_state' replace the old ones 'read_register' and
'write_register'.
Add 'resume_faulter' syscall that is similar to 'resume_thread', but
is called only when resuming a thread after resolving its pagefault.
This way the kernel can flush caches after resolving a pagefault. This is
because by now the MMU doesn't use caches when doing a pagetable walk.
Implement 'Signal_receiver::pending()'.
Provide display-subsystem MMIO.
Avoid method ambiguousness in 'Irq_context' in
'dde_linux/src/drivers/usb/signal/irq.cc'
(it derives from two list element classes when using 'base_hw').
Enables demo scenario with 'hw_panda_a2'.
Implies support for the ARMv6 architecture through 'base-hw'.
Get rid of 'base/include/drivers' expect of 'base/include/drivers/uart'.
Merge with the support for trustzone on VEA9X4 that came from
Stefan Kalkowski.
Leave board drivers in 'base/include/platform'.
Rework structure of the other drivers that were moved to
'base_hw/src/core' and those that came with the trustzone support.
Beautify further stuff in 'base_hw'.
Test 'nested_init' with 'hw_imx31' (hardware) and 'hw_panda_a2' (hardware),
'demo' and 'signal' with 'hw_pbxa9' (qemu) and 'hw_vea9x4'
(hardware, no trustzone), and 'vmm' with 'hw_vea9x4'
(hardware, with trustzone).
* Introduces Schedule_context
* Use fast-interrupts or normal interrupts
* Add mode-transition between secure/non-secure world
* Limit system resources for Genode apps due to non-secure world
This commit implements the newly introduced Vm session interface to be used
on top of TrustZone capable Armv7 CPUs. Therefore a new Schedule_context is
introduced in the kernel. Threads and Vms are both Schedule_contexts used
by the scheduler. In contrast to a thread a vm uses a different assembler
mode switch to the non-secure, virtual world, as well as another exception
is used, when the non-secure world is left. For both worlds to co-exist
the interrupt-controller needs to be configured, so that the secure (Genode)
world uses fast-interrupts only, and the non-secure world only legacy
interrupts.
The only TrustZone capable platform the base-hw kernel works on top of
is the CoreTile Express 9x4 for the Versatile Express motherboard. For a
virtual machine working properly on top some platform resources must be
reserved. Therefore there exist two flavours of this platform now, one with
the 'trustzone' spec-variable enabled, and one without. If 'trustzone' is
specified most platform resources (DDR-RAM, and most IRQs) are reserved
for the Vm and not available to the secure Genode world.