7 Commits

Author SHA1 Message Date
Stefan Thöni
78497c03ca base-linux: enabled seccomp
base-linux uses seccomp to reduce the available system calls
to the minimum set needed to run base-linux. There are still
some syscalls that allow accessing global state which should
be further reduced.

The combination of seccomp and socket descriptor caps should
provide an intermediate level of security for base-linux
thereby enabling base-linux as a migration path from using
the Linux kernel to the use of microkernel-based Genode.

Fixes #3581
2020-05-27 11:56:46 +02:00
Norman Feske
132569d12b base-linux: socket descriptor caps for RPC
On Linux, Genode used to represent each RPC object by a socket
descriptor of the receiving thread (entrypoint) and a globally-unique
value that identifies the object. Because the latter was transferred as
plain message payload, clients had to be trusted to not forge the
values. For this reason, Linux could not be considered as a productive
Genode base platform but remained merely a development vehicle.

This patch changes the RPC mechanism such that each RPC object is
represented by a dedicated socket pair. Entrypoints wait on a set of
the local ends of the socket pairs of all RPC objects managed by the
respective entrypoint. The epoll kernel interface is used as the
underlying mechanism to wait for a set of socket descriptors at the
server side.

When delegating a capability, the remote end of the socket pair is
transferred to the recipient along with a plaintext copy of the
socket-descriptor value of the local end. The latter value serves as a
hint for re-identifiying a capability whenever it is delegated back to
its origin. Note that the client is not trusted to preserve this
information. The integrity of the hint value is protected by comparing
the inode values of incoming and already present capablities at the
originating site (whenever the capability is invoked or presented to the
owner of the RPC object).

The new mechanism effectively equips base-linux with Genode's capablity
model as described in the Chapter 3 of the Genode Foundations book.
That said, the sandboxing of components cannot be assumed at this point
because each component has still direct access to the Linux system-call
interface.

This patch is based on the extensive exploration work conducted by
Stefan Thoeni who strongly motivated the inclusion of this feature into
Genode.

Issue #3581
2020-04-17 12:40:13 +02:00
Martin Stein
685f509a43 timer connection: no interpolation on arm w/o hw
On ARM, we do not have a component-local hardware time-source. The ARM
performance counter has no reliable frequency as the ARM idle command
halts the counter. Thus, we do not do local time interpolation on ARM.
Except we're on the HW kernel. In this case we can read out the kernel
time instead.

Ref #2435
2017-05-31 17:50:28 +02:00
Norman Feske
a1df4fee44 base: restructure signal-submit initialization
This patch allows core's 'Signal_transmitter' implementation to sidestep
the 'Env::Pd' interface and thereby adhere to a stricter layering within
core. The 'Signal_transmitter' now uses - on kernels that depend on it -
a dedicated (and fairly freestanding) RPC proxy mechanism for signal
deliver, instead of channeling signals through the 'Pd_session::submit'
RPC function.
2017-05-31 13:16:12 +02:00
Martin Stein
c70fed29f7 os/timer: interpolate time via timestamps
Previously, the Genode::Timer::curr_time always used the
Timer_session::elapsed_ms RPC as back end.  Now, Genode::Timer reads
this remote time only in a periodic fashion independently from the calls
to Genode::Timer::curr_time. If now one calls Genode::Timer::curr_time,
the function takes the last read remote time value and adapts it using
the timestamp difference since the remote-time read. The conversion
factor from timestamps to time is estimated on every remote-time read
using the last read remote-time value and the timestamp difference since
the last remote time read.

This commit also re-works the timeout test. The test now has two stages.
In the first stage, it tests fast polling of the
Genode::Timer::curr_time. This stage checks the error between locally
interpolated and timer-driver time as well as wether the locally
interpolated time is monotone and sufficiently homogeneous. In the
second stage several periodic and one-shot timeouts are scheduled at
once. This stage checks if the timeouts trigger sufficiently precise.

This commit adds the new Kernel::time syscall to base-hw. The syscall is
solely used by the Genode::Timer on base-hw as substitute for the
timestamp. This is because on ARM, the timestamp function uses the ARM
performance counter that stops counting when the WFI (wait for
interrupt) instruction is active. This instruction, however is used by
the base-hw idle contexts that get active when no user thread needs to
be scheduled.  Thus, the ARM performance counter is not a good choice for
time interpolation and we use the kernel internal time instead.

With this commit, the timeout library becomes a basic library. That means
that it is linked against the LDSO which then provides it to the program it
serves. Furthermore, you can't use the timeout library anymore without the
LDSO because through the kernel-dependent LDSO make-files we can achieve a
kernel-dependent timeout implementation.

This commit introduces a structured Duration type that shall successively
replace the use of Microseconds, Milliseconds, and integer types for duration
values.

Open issues:

* The timeout test fails on Raspberry PI because of precision errors in the
  first stage. However, this does not render the framework unusable in general
  on the RPI but merely is an issue when speaking of microseconds precision.

* If we run on ARM with another Kernel than HW the timestamp speed may
  continuously vary from almost 0 up to CPU speed. The Timer, however,
  only uses interpolation if the timestamp speed remained stable (12.5%
  tolerance) for at least 3 observation periods. Currently, one period is
  100ms, so its 300ms. As long as this is not the case,
  Timer_session::elapsed_ms is called instead.

  Anyway, it might happen that the CPU load was stable for some time so
  interpolation becomes active and now the timestamp speed drops. In the
  worst case, we would now have 100ms of slowed down time. The bad thing
  about it would be, that this also affects the timeout of the period.
  Thus, it might "freeze" the local time for more than 100ms.

  On the other hand, if the timestamp speed suddenly raises after some
  stable time, interpolated time can get too fast. This would shorten the
  period but nonetheless may result in drifting away into the far future.
  Now we would have the problem that we can't deliver the real time
  anymore until it has caught up because the output of Timer::curr_time
  shall be monotone. So, effectively local time might "freeze" again for
  more than 100ms.

  It would be a solution to not use the Trace::timestamp on ARM w/o HW but
  a function whose return value causes the Timer to never use
  interpolation because of its stability policy.

Fixes #2400
2017-05-31 13:16:11 +02:00
Norman Feske
c450ddcb3d Disambiguate kernel-specific file names
This patch removes possible ambiguities with respect to the naming of
kernel-dependent binaries and libraries. It also removes the use of
kernel-specific global side effects from the build system. The reach of
kernel-specific peculiarities has thereby become limited to the actual
users of the respective 'syscall-<kernel>' libraries.

Kernel-specific build artifacts are no longer generated at magic places
within the build directory (like okl4's includes, or the L4 build
directories of L4/Fiasco and Fiasco.OC, or the build directories of
various kernels). Instead, such artifacts have been largely moved to the
libcache. E.g., the former '<build-dir>/l4/' build directory for the L4
build system resides at '<build-dir>/var/libcache/syscall-foc/build/'.
This way, the location is unique to the kernel. Note that various tools
are still generated somewhat arbitrarily under '<build-dir>/tool/' as
there is no proper formalism for building host tools yet.

As the result of this work, it has become possible to use a joint Genode
build directory that is usable with all kernels of a given hardware
platform. E.g., on x86_32, one can now seamlessly switch between linux,
nova, sel4, okl4, fiasco, foc, and pistachio without rebuilding any
components except for core, the kernel, the dynamic linker, and the timer
driver. At the current stage, such a build directory must still be
created manually. A change of the 'create_builddir' tool will follow to
make this feature easily available.

This patch also simplifies various 'run/boot_dir' plugins by removing
the option for an externally hosted kernel. This option remained unused
for many years now.

Issue #2190
2016-12-23 16:51:32 +01:00
Norman Feske
ccffbb0dfc Build dynamically linked executables by default
Fixes #2184
2016-12-14 11:22:27 +01:00