Instead of returning pointers to locked objects via a lookup function,
the new object pool implementation restricts object access to
functors resp. lambda expressions that are applied to the objects
within the pool itself.
Fix#884Fix#1658
For most platforms except of NOVA a distinction between pager entrypoint
and pager activation is not needed, and only exists due to historical
reasons. Moreover, the pager thread's execution path is almost identical
between most platforms excluding NOVA, HW, and Fisco.OC. Therefore,
this commit unifies the pager loop for the other platforms, and removes
the pager activation class.
The reference count get increase to use 2 bytes, so we need the double amount
of selectors as before.
Additionally print a message if we run out of capabilities in a server. Since
our rpc framework is now clever enough to detect that for a printf we don't
need to setup a receive window, we may use a printf instead of a die call.
Eases debugging.
Issue #1601
Showcasing the out of memory kernel issue.
One test triggers oom during memory delegation when talking to core pager
thread. Two other test trigger oom during capability delegation in a
server/client scenario for send and reply phase separately.
Issue #1601
Moves the Bios Data Area header from base-hw to base. Modifies the
base-nova core console that it uses the header as replacement for
the previous BDA bit logic.
Ref #1625
This commit eliminates the mutual interlaced taking of destruction lock,
list lock and weak pointer locks that could lead to a dead-lock situation
when a lock pointer was tried to construct while a weak object is in
destruction progress.
Now, all weak pointers are invalidated and dequeued at the very
beginning of the weak object's destruction. Moreover, before a weak pointer
gets invalidated during destruction of a weak object, it gets dequeued, and
the list lock is freed again to avoid the former dead-lock.
Fix#1607
- free up kernel memory of empty slabs (if already one empty slab is in
place)
- free up more page table entries
- handle CPUs with invariant TSCs gracefully
Genode/Nova running on CPUs without the invariant TSC feature may seem
to 'hang'. The referenced commit of the nova branch fixes the issue
for some older Intel CPUs.
Fixes#1615
Bomb and any server may generate references to capabilities exceeding 256 -
use a 16bit counter until the cap handling in Genode gets unified.
Additionally try to print a warning, instead of dying, if we get cap reference
count under or overflow.
Issue #1615
This patch enable clients of core's TRACE service to obtain the
execution times of trace subjects (i.e., threads). The execution time is
delivered as part of the 'Subject_info' structure.
Right now, the feature is available solely on NOVA. On all other base
platforms, the returned execution times are 0.
Issue #813
Avoids the need to have per IRQ a thread that blocks synchronously for next
interrupt. Now a thread may wait for multiple IRQs as other signals
simultaneously.
In core no threads are required anymore for IRQs/MSI - the clients (either
the pci_drv or in case of MSI the driver) gets the IRQ delivered directly as
a ordinary Genode signal.
Useful since #1216 and #1487 is now available.
Commit applies feature of #1446 also to IRQ/MSIs.
On NOVA, a Genode thread currently cannot destroy itself by destroying its
own 'Thread' object, because in 'Thread_base::_deinit_platform_thread()'
it cannot call 'Cpu_session::kill_thread()' anymore after it has revoked
its own UTCB.
As solution, the revocation of the UTCB can be delayed until its location
in the context area is needed by a new thread.
Fixes#1505
On seL4, we need to convert untyped memory to page frames before being
able to use it as normal memory. There already exists the hook function
'_export_ds' that is principally suitable for such tasks. It is
currently solely used on Linux where we have to create a file for each
dataspace. To make the hook useful also for seL4, we need to call
_export_ds prior _clear_ds. Otherwise, we would try to clear memory that
is still untyped.
The thread library (thread.cc) in base-foc shared 95% of the code with
the generic implementation except myself(). Therefore, its
implementation is now separated from the other generic sources into
myself.cc, which allows base-foc to use a foc-specific primitive to
enable our base libraries in L4Linux.
Issue #1491
Physical CPU quota was previously given to a thread on construction only
by directly specifying a percentage of the quota of the according CPU
session. Now, a new thread is given a weighting that can be any value.
The physical counter-value of such a weighting depends on the weightings
of the other threads at the CPU session. Thus, the physical quota of all
threads of a CPU session must be updated when a weighting is added or
removed. This is each time the session creates or destroys a thread.
This commit also adapts the "cpu_quota" test in base-hw accordingly.
Ref #1464
* Instead of using local capabilities within core's context area implementation
for stack allocation/attachment, simply do both operations while stack gets
attached, thereby getting rid of the local capabilities in generic code
* In base-hw the UTCB of core's main thread gets mapped directly instead of
constructing a dataspace component out of it and hand over its local
capability
* Remove local capability implementation from all platforms except Linux
Ref #1443
The global capability ID counter is not used by NOVA and Fiasco.OC
and in the future not needed by base-hw too. Thereby, remove the static
counter variable from the generic code base and add it where appropriated.
Ref #1443
Enable platform specific allocations and ram quota accounting for
protection domains. Needed to allocate object identity references
in the base-hw kernel when delegating capabilities via IPC.
Moreover, it can be used to account translation table entries in the
future.
Ref #1443
The bindings for 32bit did not consider that in the syscall_3 function
edx changes due to the assembly instructions and that in the syscall_4
function edx and ecx change. So, the compiler wrongly assumed that the
content of these registers stayed unchanged.
Fixes#1447
If running multiple VBox VMMs with Windows as guest concurrently then it may
happen that the system seem to hang. It turned out that actually
a VM-exit storm (vmx_exception->handle_exc_nm) causes a endless loop between
kernel and vCPU. Nothing gets scheduled nor interrupts are received anymore.
The referenced kernel commit fixes this issue.
Issue #1343
The linker scripts use to fill alignment gaps within the text section
with the magic value 0x90909090, which correponds to the opcodes of four
nop instructions on x86. This patch removes this value because it
apparently solves no problem. If, for some reason (e.g., due to a dangling
pointer) a thread executes instructions within alignment paddings, NOP
instructions are not any better than any other instruction. The program
will eventually execute the instructions after the padding, which is
most likely fatal. It would be more reasonable to fill the padding with
the opcode of an illegal instruction so that such an error can be
immediately detected. That said, I cannot remember a single instance,
where the fill value has helped us during debugging.
Even if the mechanism served a purpose on x86, it is still better to
remove it because it does not equally work on the other architectures
where the linker scripts are used. I.e., on ARM, the opcode 0x90909090
is not a NOP instruction.